
47
Managing Web Experiments for

Psycholinguistics: An Example from
Experimental Semantics/Pragmatics

Judith Degen and Judith Tonhauser
1 Introduction

This chapter reports on the organization of an experimental semantics/pragmatics project that

investigated the extent to which variability in a content’s projectivity is predicted by that

content’s at-issueness (Tonhauser, Beaver, & Degen 2018). The project included four web-based

experiments in which participants adjusted sliding scales to provide projectivity and at-issueness

ratings for close to three hundred items. The workflow and best practices we report here are

generalizable to any sufficiently similar web-based study, as well as to in-lab studies and

dependent measures that differ substantially from the reported ones, for example, online

measures such as eye movements. The workflow further easily accommodates computational

project components including cognitive models and corpus analyses, though the current chapter

does not include these components. The chapter also describes best practices within the first

author’s interActive Language Processing Lab at Stanford (ALPS) at the time of writing. We

close with some reflections on what we would do differently if we were we to start this project

again from scratch.

2 Research hypothesis: The less at-issue a content
is, the more it projects
The project whose organization is described in this chapter was published in Tonhauser, Beaver,

and Degen (2018) and addressed the following two questions, which we explain further in this

section:

1. Is there variability in the extent to which the content associated with an expression projects?
2. If there is variability, is degree of projection predicted by a content’s at-issueness?

For instance, the verb regret is typically taken to be a factive predicate. This means that

even when embedded under so-called entailment-canceling operators such as polar questions as

in (1) or negation as in (2), the content of its complement—here that Mike visited Alcatraz—is

taken to project, in other words, the speaker of (1) and (2) is taken to be committed to Mike

having visited Alcatraz.

(1) Does Felipe regret that Mike visited Alcatraz?

(2) Felipe doesn’t regret that Mike visited Alcatraz.

This is in contrast to (3) and (4), where the speaker is not taken to be committed to the content of

the complement of the non-factive predicate think.

(3) Does Felipe think that Mike visited Alcatraz?

(4) Felipe doesn’t think that Mike visited Alcatraz.

While intuitions appear to be clear regarding the projection of some contents, there is

evidence that content varies in its projectivity (Karttunen 1971; Smith & Hall 2011; Xue & Onea

2011). Our goal was to investigate this potential projection variability systematically and test the

hypothesis, based on previous work (Abrusán 2011; Beaver et al. 2017; Simons et al. 2010), that

projection of content is predicted by the extent to which that content is not-at-issue, in other

words, the extent to which the content is taken to be background information.

To address research questions 1 and 2, we conducted four web-based experiments: in

experiments 1a and 1b, we collected projection ratings and at-issueness ratings for the projective

contents of two sets of expressions. In experiments 2a and 2b, we collected at-issueness ratings

for the same contents as in experiments 1a and 1b using a different at-issueness diagnostic. We

found that there is variability in the projectivity of content associated with different expressions,

both across and within expressions, and that this variability is systematically predicted by at-

issueness: the less at-issue a particular content is, the more it projects.

While this project investigated issues at the core of formal semantics/pragmatics, the

project management structure described herein is general enough to extend to experimental

studies in any area of linguistics.

3 Data management: The organizational framework
In this section we present the workflow and organization of the project and offer comments on

the general workflow of any experimental project we conduct. To orient the reader to the

management spirit of this and all other projects conducted within ALPS Lab: we aim for all

experiments and analyses reported in papers to be directly reproducible (see also Berez-Kroeker,

McDonnell, Collister, & Koller, chapter 1, this volume; Gawne & Styles, chapter 2, this volume;

Mattern, chapter 5, this volume). This means that we aim to freely share as much of a project as

possible and avoid using proprietary software whenever possible. For the current project, all

experimental files, data files, and analysis files are freely available online. Moreover, all of the

software used to generate the experiments, manage the connection between the experiment and

the experiment hosting platform, and analyze the data, are open source.

3.1 The organizational framework for collaboration
While every project starts with an idea, its organization starts with the creation of a dedicated

project directory that serves to store experimental materials, data, analysis scripts, and

documentation. The collaborative nature of many experimental (and computational) projects

requires a framework to manage file sharing and communication between collaborators. To this

end, we use GitHub,1 Git,2 and Slack,3 described in the following.

As a matter of course, we immediately turn a new project directory into a GitHub

repository so all materials—experimental files, data files, and analysis files—are openly shared

online. GitHub is a file hosting platform that includes version control and allows people to work

together on projects. We recommend the use of GitHub as a way of sharing project materials

openly regardless of the number of project collaborators. The repository that accompanies this

chapter can be found at https://github.com/judith-tonhauser/how-projective.

In this project (and in general for ALPS Lab projects), we used Git to keep track of the

project’s progress. Git is a version control system. Originally it was developed for tracking

changes in software development, but it has the broader application of tracking changes in any

file, which makes it useful for tracking changes in research projects generally. We use Git to

locally keep track of changes we make to files, and via integration with GitHub, these changes

are also visible to our collaborators and anybody with Internet access at large. We additionally

used Slack, a collaboration tool that is essentially a messaging system and allows for (groups of)

users to create channels dedicated to specialized topics or research projects and to exchange

messages about the project. We used Slack’s GitHub integration feature to link the GitHub

repository to our dedicated project channel, which allows Slack to follow any changes made to

the GitHub repository and to automatically post as messages in Slack the commit messages

created by the researcher when a change is made to the repository. This allows collaborators on

the project to be notified when a change is made to the repository and to see what the nature of

the change is (provided the researcher making the change has written an informative commit

message). Together, Git/GitHub/Slack comprise the collaboration framework used in this project

and in all of ALPS Lab’s projects. Note that for the reader interested in following the structure of

the project, Slack is not necessary, though we recommend it as a tool for collaborative research

projects to manage communication. Similarly, for readers who have not integrated Git/GitHub

into their workflow, using these tools is not necessary for viewing or emulating the project

structure, though we strongly recommend integrating these tools into your own workflow as they

increase ease of collaboration, increase project transparency and shareability, and assuage fears

of losing data or not being able to revert to a previous version of a file.

In the following, you can (a) view the project in the browser at https://github.com/judith-

tonhauser/how-projective; (b) download the project repository from that same URL and follow

along locally on your machine; or (c) if you have installed Git, clone the repository from the

command line and follow along locally:

git clone https://github.com/judith-tonhauser/how-projective.git

3.2 Project repository structure
The project repository, like ALPS Lab repositories in general, has the following content:

1. A README markdown file in the root directory of the repository, which contains
information about the repository’s contents.

2. An experiments directory, which stores all the files required to run the experiments. This
directory is further divided into subdirectories: one for each experiment, named
appropriately, and a _shared directory that contains JavaScript libraries required for any of
the experiments to run.

3. A results (or analysis) directory, which stores all the files required to analyze the collected
data. This directory is further divided into subdirectories that mirror the structure of the

experiments directory, that is, each experiment in experiments has its corresponding directory
in results. It also contains files with helper functions required by all analysis scripts (in this
case, aptly named helpers.R) as well as a separate directory for any analyses spanning
multiple experiments.

4. A paper (or writing) directory, which contains the files that generate the final submitted
version of the paper. When this is a more general writing directory, it may contain multiple
writing projects, organized as separate subdirectories.

A project repository routinely contains the following additional directories:

5. A data directory, if the project is complex and the researchers want to keep all relevant data
files in one place.

6. A models directory, if the project encompasses a computational cognitive modeling (separate
from the statistical analysis) component, as is frequently the case in the ALPS Lab.

7. A talks directory, where slides from talks given about the project are stored.

Some projects may also encompass corpus searches. Depending on the status of these

searches—whether they constitute the main studies of the project or whether they are used to

extract information to be used in the analysis of the main studies—they may either merit their

own top-level directory (e.g., corpus_analysis) or be included in the experiments or analysis

directories. Finally, each repository also contains a .gitignore file, which specifies files that Git

should ignore (i.e., not track changes in, and not push to the online GitHub repository). We say

more on this in section 4.

We consider this to be an optimal project repository structure and have not yet

encountered a project that doesn’t benefit from this organizational structure. Cleanly separating

the files used to generate the experiments from the analysis of the data collected in said

experiments is useful because it naturally separates two aspects of the replicability pipeline: (a)

the reproducibility of the experimental methodology (including the exact task, materials, trial

structure, and instructions) and (b) the reproducibility of the data analysis (and thereby hopefully

the replicability of the results). An external party interested in reproducing the analysis but not in

rerunning the experiment may therefore directly operate only on the results directory without

having to wade through the experiments directory. In contrast, an external party interested only

in seeing exactly what participants’ task was can easily navigate to and open the .html file

corresponding to the experiment of interest without having to search very hard.

In sections 4 and 5 we describe the contents of the experiments and the results directories

and the associated workflows, which we consider the main components of the project.

4 Data collection (experiments directory)
Each experiment in the project was run via Amazon’s Mechanical Turk,4 a crowdsourcing

platform that allows individuals to post so-called Human Intelligence Tasks (HITs, e.g.,

experiments) for workers to complete. Running web-based experiments via Mechanical Turk and

similar online platforms such as Clickworker5 and Prolific Academic6 has many advantages over

in-lab studies, including a larger and more diverse participant population than is typically

available on university campuses, as well as very rapid completion times (Buhrmester, Kwang,

& Gosling 2011; Mason & Suri 2012).7 Moreover, many classic results from the cognitive

psychology literature have been replicated via Mechanical Turk, suggesting that data from online

participants are generally reliable (Buhrmester, Kwang, & Gosling 2011; Crump, McDonnell, &

Gureckis 2013). Measures that increase data reliability and reduce dropout include paying

participants reasonable rates,8 running studies in the morning on weekdays, including attention

checks, and including a progress bar so that participants have an estimate of the remaining length

of the experiment.

In the following, we describe one way the workflow for a Mechanical Turk experiment

can be managed; this workflow was used for the current project and is the standard workflow for

any web-based experiment in ALPS Lab. Its advantages include a large degree of flexibility in

the choice of experimental design and task, automated infrastructure for posting experiments and

retrieving data, and a high degree of reproducibility. The initial learning curve is, we believe,

very much justified by the payoff.

Each experiment was programmed as an external website using

HTML9/JavaScript10/Cascading Style Sheets (CSS)11 and posted to Mechanical Turk. While

generating experiments directly using HTML/JavaScript/CSS initially involves a learning curve

for the user uninitiated in web programming, we recommend it over using the Mechanical Turk

templates or out-of-the box services such as Qualtrics. The reason is that programming one’s

own experiments allows for more flexibility and control regarding tasks and experimental design

than out-of-the-box services do. While the current experiment involved a simple continuous

slider rating task in a two-block design with randomization of trials within blocks, we have used

the same general infrastructure to run truth-value judgment studies, response time studies, self-

paced reading studies, perception studies, free and forced production studies, studies involving

drag-and-drop functionality, and many others. Example templates for such studies within the

same framework used for this study are provided at

https://github.com/thegricean/LINGUIST245B. We encourage interested readers to use the files

we have provided as the basis for their own experiments. The Internet abounds with good web-

programming tutorials to aid in the process of modifying the experiments.

To run the experiments, we uploaded each experiment to J.T.’s university web space to

be accessed through an external URL.12 To link the experiment website to Mechanical Turk as a

HIT we used the Submiterator tool (now superseded by Supersubmiterator13), which provides an

intuitive wrapper around the Mechanical Turk command line tools.14 The experiment ran until all

the data were collected (no longer than a few hours for any of the experiments). Again using

Submiterator, the data file was downloaded from Mechanical Turk, participant worker identifiers

(IDs)15 anonymized, and the data reformatted in such a way that the resulting .csv file contained

one data point per row with all the relevant information for statistical analysis. This data file was

then copied into the corresponding data subdirectory in the results directory, which concluded

the data collection process.

4.1 Experiment files
We find it useful to label the directories corresponding to the individual experiments that were

run in ascending order (e.g., by prefacing the directory names with 1_, 2_). This serves as a

reminder of the chronological order in which the experiments were run. In this case, there is only

a small number of experiments so this may seem less relevant, but for projects that require a lot

of piloting, this ascending labeling is extremely useful. Alternatively, we have found it useful in

other projects to include pilots and main subdirectories that contain the pilot experiments and

main experiments to be reported, respectively.

Each of the subdirectories in the experiments has the same structure and consists of the

following:

1. An experiment.html file that specifies the elements of the experiment and can be opened in a
browser to view the experiment.16

2. A js directory that contains an experiment.js JavaScript file that determines the logical flow of
the experiment.

3. A css directory that contains .css style files that determine stylistic elements of the experiment.

4.2 Interfacing with Mechanical Turk

Once the experiments were ready to be deployed, we used Submiterator, a Python program

originally written by Dan Lassiter and extended by Erin Bennett, to post the experiment to

Mechanical Turk, subsequently retrieve the data, and anonymize participants’ worker IDs. As

noted, this tool has since been superseded by Supersubmiterator, written by Sebastian Schuster,

which has the following convenient features; features 2 and 3 were not yet available with

Submiterator:

1. One simple command each for (a) posting the experiment, (b) retrieving the results, and (c)
reformatting the Mechanical Turk results file (which comes back as one participant’s data per
row) into a .csv file with one data point per row for easy analysis in R with already
anonymized worker IDs.

2. No interaction with the no longer supported Mechanical Turk Command Line Tools is
necessary. Simply specify a .config file with all relevant information about the HIT (see the
Supersubmiterator documentation for more details, and see figure 47.1 for an example
.config file for experiment 1a).

3. Built-in batch support that makes sure that the total number of assignments (participants) is
spread over batches of no more than nine each. This is relevant because, at the time of
writing, Amazon charges a 40% fee for HITs with more than nine assignments, but only 20%
for HITs with up to nine assignments. The reformatting command automatically generates
one merged data file for analysis.

{~?~IM: insert Figure 47.1 here.}
Figure 47.1

Example .config file for posting experiments to Mechanical Turk with Supersubmiterator.
Running Supersubmiterator requires only installing the tool, whereas Submiterator

additionally required installing the no longer supported Mechanical Turk Command Line Tools

(highly discouraged, given the lack of future support). Additionally, any requirements associated

with Mechanical Turk studies generally—including having an Amazon Payments account and a

Mechanical Turk requester account—are necessary.

Because using Supersubmiterator means that multiple HITs with nine participants are

generated, the issue of how to prevent participants from taking the experiment multiple times is

relevant: the Unique Turker17 service provides that functionality. Setup notes are provided on the

first author’s LINGUIST 245B “Methods in Psycholinguistics” GitHub repository18 along with

setup notes for the rest of the web-based experiment pipeline used in ALPS Lab and useful

Mechanical Turk–related tips.

For the current project, the steps involved in running each experiment were:19

1. Program experiment as external website and copy it to web space.
2. Create mturk directory inside the experiments directory where all Mechanical Turk–related

files are stored and from where the Submiterator command will be called.
3. Create experiment.config file (see example in figure 47.1) in mturk.
4. Run from command line to post experiment to Mechanical Turk:

submiterator posthit experiment
5. Run from command line to retrieve data from Mechanical Turk:

submiterator getresults experiment
6. Run from command line to reformat data for worker ID anonymization and easy analysis in

R:
submiterator reformat experiment

7. Copy generated data file experiment.csv to its corresponding data directory in results
directory.

Step 7 is necessary because the project repository’s .gitignore file specifies that all files

inside of directories called mturk are to be ignored. This is a safety measure to ensure that

deanonymized participant data does not end up visible to the public on the Internet. It does

introduce one step of potential human error if the wrong file is copied or is copied to the wrong

place. We consider this preferable to the potential for exposing deanonymized data. A record of

participant worker IDs is thus only kept on the local machine of the researcher who ran the

experiment.

5 Data analysis (results directory)
For this project, and in ALPS Lab generally, we used the open-source statistical software

package R (R Core Team 2017) in conjunction with the integrated development environment

RStudio (RStudio Team 2016) to analyze the data. Reasons why RStudio is highly recommended

include the ease of managing multiple active analysis scripts and plots, workspace visualization,

syntax highlighting and prediction, and seamless integration with R Markdown20 and knitr.21

Useful packages we used in this project (1–4 we use routinely) include:

1. lme4 (Bates, Maechler, & Dai 2009) for conducting mixed-effects analyses.
2. brms (Bürkner 2017) for conducting Bayesian mixed-effects analyses.
3. tidyverse (Wickham 2017) for tidy data wrangling in R.
4. ggplot2 (Wickham 2016) for data visualization.
5. lsmeans (superseded by emmeans; Lenth 2016) for computing pairwise comparisons.

The directory structure of results roughly mirrors that of experiments, in that each

experiment receives its own directory in results. Each experiment directory further contains

subdirectories data, graphs, and rscripts, which cleanly separates data files (e.g., the

experiment.csv file generated by Submiterator reformat), R analysis files,22 and graphs generated

in the analysis process.

The rscripts directory contains separate R scripts for preprocessing the raw data from

Mechanical Turk (mostly for the purpose of performing data exclusions, preprocessing.R),

creating useful visualizations that are saved to the graphs subdirectory (graphs.R), and analyzing

the data using mixed-effects models (analysis.R). All scripts should contain enough comments to

allow the reader to reproduce the analyses reported in the paper and to follow what was done at

each step. This particular way of separating the scripts is not necessary, though it can be helpful

to separate preprocessing, visualization, and analysis.

6 Concluding remarks
We believe the reported organizational framework for web-based studies is a useful one: it

cleanly separates relevant components of the reproducibility pipeline and openly stores all

components for others to reproduce and build off of, with the exception of Mechanical Turk–

related files that contain confidential participant information.

6.1 Generalization to other types of studies
The organizational framework we reported in this chapter generalizes to any project using web-

based experiments. Experience suggests that it also easily generalizes to projects that use

computational cognitive modeling or corpus searches in addition to (or instead of) behavioral

experiments.23 It also generalizes to lab-based experiments and experiments conducted in the

field—storing experimental scripts is a general property of the framework and is not specific to

web-based or even more specifically Mechanical Turk experiments. An issue arises when

proprietary software, such as E-Prime, is used. In this case, less material can be shared. We

consider this a reason to use open-source software whenever possible.

A different problem arises for studies that require storing very large data sets, as is often

the case with eye-tracking or ERP studies. GitHub has limits on how much data can be stored

within one repository: at the time of writing, no one file can be larger than one hundred

megabytes; repositories have a hard limit of one hundred gigabytes; and it is recommended that

repositories be kept under one gigabyte in size. While large file storage solutions are constantly

being developed, an option for those wanting to remain within the GitHub universe is to use Git

Large File Storage (Git-LFS).24 Another option is to upload downsampled or otherwise

compressed data files and keep the raw data files backed up locally.

6.2 What would we change?
In general, we consider this an instance of a well-organized and easily shareable project that we

recommend as a model to others. However, given the rapid pace at which discussions regarding

best practices in open and transparent science are progressing, we have already identified one

key issue that we would handle differently, were we to start from scratch: preregistration. The

Open Science Framework (OSF) makes it easy to preregister hypotheses, experimental design,

and analyses (Foster & Deardorff 2017). The literature suggests that preregistration reduces the

potential for many pitfalls in scientific practice, including avoiding problematic researcher

degrees of freedom in fiddling with exclusion criteria, determining stopping criteria for running

participants, and running exploratory analyses that are framed as planned analyses in the

resulting papers (Roettger 2019; Simmons, Nelson, & Simonsohn 2011). Indeed, in current

follow-ups to this project we have preregistered our hypotheses (see OSF preregistration at

https://osf.io/hn8px/), and the policy we have implemented in ALPS Lab is that any hypothesis-

driven experiment must be preregistered. This excludes experiments that only serve norming

purposes or are acknowledged to be exploratory experiments that serve a subsequent hypothesis-

generation purpose, though we have begun to preregister even those simply to note in an official

place what the point of the experiment is. This is not to say that we see preregistration as the

solution to all replicability problems, nor that there is anything wrong with conducting

exploratory analyses—indeed, we are fans of fully exploring and becoming intimate with one’s

data sets. Preregistering hypotheses simply allows for a clear separation between confirmatory

and exploratory analyses (for discussion, see Nicenboim et al. 2018; Roettger 2019).

A second thing we might do differently is to use R Markdown files instead of simple R

files for running and documenting analyses. R Markdown allows for weaving together text

written in the Markdown language with R source code to generate a coherent document that

contains both the output of R code that is run (e.g., visualizations or tables of model coefficients)

as well as prose descriptions of the analysis. The resulting document can be compiled into

multiple output formats, including HTML and PDF. It can thus function as an internal lab

notebook or even as a full paper.

Table 47.1 Overview of tools used
Use Tool More information
Communication Slack https://slack.com
Version control Git

GitHub
https://git-scm.com
https://github.com

Experiment
development

HTML/JavaScript/CSS https://www.w3schools.com/html/default.asp

Mechanical Turk
interface

Supersubmiterator https://github.com/sebschu/Submiterator

Data analysis R
RStudio

https://www.r-project.org
https://rstudio.com

Preregistration Open Science Framework https://osf.io

6.3 Adopting the organizational framework
We are aware of the steep learning curve involved in adopting the workflow outlined in this

chapter for those who have never used any of the described tools, but we believe it is worth it in

the long run for all the reasons discussed in this chapter. The reader need not adopt all

components of the framework at once. Table 47.1 provides an overview of the tools we

discussed. You can add these tools to your own workflow incrementally, which is what we did

over the years. Each addition yielded an improvement in transparency and organization of our

projects, and we hope the same will be true for you.

References
Abrusán, M. 2011. Predicting the presuppositions of soft triggers. Linguistics and Philosophy 34

(6): 491–535. https://doi.org/10.1007/s10988-012-9108-y.

Bates, D., M. Maechler, and B. Dai. 2009. lme4: Linear mixed-effects models using S4 classes.

R package version 0.999375–31.

Beaver, D. I., C. Roberts, M. Simons, and J. Tonhauser. 2017. Questions under discussion:

Where information structure meets projective content. Annual Review of Linguistics 3:

265–284. https://doi.org/10.1146/annurev-linguistics-011516-033952.

Buhrmester, M., T. Kwang, and S. D. Gosling. 2011. Amazon’s Mechanical Turk: A new source

of inexpensive, yet high-quality, data? Perspectives on Psychological Science 6 (1): 3–5.

https://doi.org/10.1177/1745691610393980.

Bürkner, P.-C. 2017. brms: An R package for Bayesian multilevel models using Stan. Journal of

Statistical Software 80 (1): 1–28. https://doi.org/10.18637/jss.v080.i01.

Crump, M. J. C., J. V. McDonnell, and T. M. Gureckis. 2013. Evaluating Amazon’s Mechanical

Turk as a tool for experimental behavioral research. PloS One 8 (3): e57410.

https://doi.org/10.1371/journal.pone.0057410.

Foster, E. D., and A. Deardorff. 2017. Open Science Framework (OSF). Journal of the Medical

Library Association 105 (2): 203–206. https://doi.org/10.5195/JMLA.2017.88.

Karttunen, L. 1971. Implicative verbs. Language 47 (2): 340–358.

Lenth, R. V. 2016. Least-squares means: The R package lsmeans. Journal of Statistical Software

69 (1): 1–33. https://doi.org/10.18637/jss.v069.i01.

Mason, W., and S. Suri. 2012. Conducting behavioral research on Amazon’s Mechanical Turk.

Behavior Research Methods 44 (1): 1–23. https://doi.org/10.3758/s13428-011-0124-6.

Nicenboim, B., S. Vasishth, F. Engelmann, and K. Suckow. 2018. Exploratory and confirmatory

analyses in sentence processing: A case study of number interference in German.

Cognitive Science 42:1075–1100. https://doi.org/10.1111/cogs.12589.

Pittman, M., and K. Sheehan. 2016. Amazon’s Mechanical Turk a digital sweatshop?

Transparency and accountability in crowdsourced online research. Journal of Media

Ethics: Exploring Questions of Media Morality 31 (4): 260–262.

https://doi.org/10.1080/23736992.2016.1228811.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. https://www.r-

project.org.

Roettger, T. B. 2019. Researcher degrees of freedom in phonetic research. Laboratory

Phonology: Journal of the Association for Laboratory Phonology 10 (1): 1.

https://doi.org/10.5334/labphon.147.

RStudio Team. 2016. RStudio: Integrated Development ENvironment for R.

Simmons, J. P., L. D. Nelson, and U. Simonsohn. 2011. False-positive psychology: Undisclosed

flexibility in data collection and analysis allows presenting anything as significant.

Psychological Science 22 (11) 1359–1366. https://doi.org/10.1177/0956797611417632.

Simons, M., J. Tonhauser, D. Beaver, and C. Roberts. 2010. What projects and why. Semantics

and Linguistic Theory 20:309–327.

http://elanguage.net/journals/salt/article/download/20.309/1326.

Smith, E. A., and K. C. Hall. 2011. Projection diversity: Experimental evidence. Proceedings of

the ESSLLI 2011 Workshop on Projective Meaning, 156–170.

Tonhauser, J., D. I. Beaver, and J. Degen. 2018. How projective is projective content? Gradience

in projectivity and at-issueness. Journal of Semantics 35 (3): 495–542.

https://doi.org/10.1093/jos/ffy007.

Wickham, H. 2017. tidyverse: Easily Install and Load the “Tidyverse.” https://CRAN.R-

project.org/package=tidyverse.

Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

https://ggplot2.tidyverse.org.

Xue, J., and E. Onea. 2011. Correlation between presupposition projection and at-issueness: An

empirical study. Proceedings of the ESSLLI 2011 Workshop on Projective Meaning, 171–

184.

Notes
1 https://github.com.

2 https://git-scm.com.

3 https://slack.com.

4 https://www.mturk.com.

5 https://www.clickworker.com.

6 https://www.prolific.co.

7 We routinely complete studies that require three hundred participants within a few hours of posting.

8 ALPS Lab typically aims to pay participants at a rate of $12–$14 per hour. At the time of writing, US federal

minimum wage is $7.25 and California minimum wage is $12. Workers typically get paid about $3 per hour on

Mechanical Turk, which has been documented as a serious and systematic case of labor exploitation (Pittman &

Sheehan 2016).

9 https://www.w3schools.com/html/.

10 https://www.w3schools.com/js/.

11 https://www.w3schools.com/css/.

12 The experiments have since been taken off of J.T.’s Ohio State university web space. We provide a lasting

example of experiment 1a at https://web.stanford.edu/~jdegen/exp1a/experiment.html—this is the same

experiment that is viewable by the reader by opening the file experiments/exp1a/experiment.html in a browser

on your local machine if you have cloned the repository as described in section 3.

13 https://github.com/sebschu/Submiterator.

14 Other tools or entire frameworks that provide interfaces with Mechanical Turk and other crowdsourcing

platforms and include some functionality for experiment development directly include psiTurk

(http://psiturk.org/) and _magpie (https://magpie-ea.github.io/magpie-site/), among many others.

15 A Mechanical Turk worker ID is a unique identifier associated with a participant, linked to their e-mail address,

and thus provides personal identifying information. These IDs must therefore never be posted online.

16 To view the HTML and JavaScript code, open any of the files in your favorite editor. We like Sublime Text

(https://www.sublimetext.com) and recommend avoiding built-in editors such as Notepad.

17 https://uniqueturker.myleott.com.

18 https://github.com/thegricean/LINGUIST245B.

19 The experiments for this project were run before the existence of Supersubmiterator, so these commands assume

the use of Submiterator.

20 https://rmarkdown.rstudio.com.

21 https://yihui.name/knitr/.

22 Researchers may use different statistical software packages for data analysis. For example, for someone who uses

Python wanting to replicate our workflow, the only difference should be in the rscripts directory. We have no

recommendations for researchers using SPSS or other drop-down menu software packages except to switch to R

or Python, for the simple reason that they offer more control, better shareability, automation and consequently

increased reproducibility of analysis steps, comparatively easy identification of analysis errors, better online

documentation, and, thanks to its large developer base, many more methods than are implemented in SPSS.

23 Examples of recent lab repositories with computational components:

https://github.com/thegricean/RE_production.

24 https://git-lfs.github.com/.

