Modeling cross-linguistic production of referring expressions

Brandon Waldon
Stanford University, bwaldon@stanford.edu

Judith Degen
Stanford University, jdegen@stanford.edu

Follow this and additional works at: https://scholarworks.umass.edu/scil

Part of the Computational Linguistics Commons

Recommended Citation

Available at: https://scholarworks.umass.edu/scil/vol4/iss1/20

This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Proceedings of the Society for Computation in Linguistics by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Modeling cross-linguistic production of referring expressions

Brandon Waldon
Stanford University
bwaldon@stanford.edu

Judith Degen
Stanford University
jdegen@stanford.edu

Abstract

We present a novel probabilistic model of referring expression production, synthesizing recent analyses proposed within the Rational Speech Act (RSA) framework (Frank and Goodman, 2012). Our model makes incremental utterance choice predictions (Cohn-Gordon et al. 2018a; Cohn-Gordon et al. 2018b) and assumes a non-deterministic semantics for adjectives in referring expressions (Degen et al. 2020). The model captures previously attested production patterns in reference game experiments, including English speakers’ tendency to produce redundant color adjectives more frequently than redundant size adjectives, as well as Spanish speakers’ tendency to employ redundant color adjectives less frequently than English speakers. We report the predictions made by the model under various parameter regimes, motivating future empirical work.

1 Using language to refer

A key communicative use of language is to refer. Understanding the constraints on referring expression production has therefore been a key enterprise in experimental and computational psycholinguistics alike (Pechmann, 1989; Sedivy, 2003; Gatt et al., 2011; van Deemter et al., 2012; Dale and Reiter, 1995). Here we focus on reference to objects presumed to be in visual common ground between speaker and listener.

Figure 1 contains two theoretically-relevant types of referring contexts which will be the focus of this paper. Their respective names—the size-sufficient (SS) scene and the color-sufficient (CS) scene—derive from expectations of how pragmatically competent speakers can use language to unambiguously establish reference to the target object $o_{\text{small, blue}}$ (highlighted by green border). Grice (1975) proposed that in order to recover speaker meaning, listeners employ interpretive heuristics that can be formulated in terms of assumptions about how cooperative speakers behave in conversation, including that they should be as informative, but no more informative, than required. This has been interpreted as an expectation that speakers produce the minimally informative expressions that meet the standards of communicative sufficiency in context. In the SS scene, one can establish reference to $o_{\text{small, blue}}$ using just a size adjective plus a head noun (e.g. the small pin). In the CS scene, one can refer to that object using just a color adjective plus a head noun (e.g. the blue pin).

Contra what we might expect in light of the above discussion, speakers routinely produce redundant adjectival modifiers in referential contexts (Pechmann, 1989; Nadig and Sedivy, 2002; Maes et al., 2004; Engelhardt et al., 2006; Arts et al., 2011; Koolen et al., 2011). For example, speakers produce the small blue pin to refer to $o_{\text{small, blue}}$ in the SS scene, where the modifier blue is an instance of redundant color modification. The small blue pin in the CS scene is an instance of redundant size modification, which is much more rarely attested.

In addition, rates of redundant modification appear to vary cross-linguistically. Languages such as Spanish—in which modification tends to occur post-nominally—exhibit lower rates of redundant color modification than does English, in which the canonical adjective placement is pre-nominal (Rubio-Fernández, 2016). As Rubio-Fernández (2016) and Cohn-Gordon et al. (2018b) discuss, this result suggests the need to design theories of referring expression production that are sensitive to the linear order of words within those expres-
In this paper, we present a novel computational model of speakers’ choice of referring expression, synthesizing recent analyses proposed within the Rational Speech Act (RSA) framework. In Section 2, we review relevant findings from the experimental literature on linguistic reference, including within-language and cross-linguistic patterns in production choice that inform our desiderata of a successful computational model. In Section 3, we examine the properties of existing models and argue that a synthesis of those models is necessary to meet our desiderata. We present that synthesis in Section 4 and report the cross-linguistic predictions made by the model under various parameter regimes. Section 5 extends the analysis to various possible Spanish idiolects, which vary according to their preferred complex multi-adjectival determiner phrase (DP) structures.

2 Previous experimental findings

A theory of referring expression production should explain observed human production choices. We focus on two phenomena that such a theory should capture: the color/size asymmetry in overmodification observed in English, and cross-linguistic variation in overmodification.

2.1 The color/size asymmetry

Redundant modification is attested in both SS and CS-like contexts. However, in English, Dutch, and German—the prenominal adjective languages which have received the most attention—redundant color modification is much more frequent than redundant size modification (Degen et al., 2020; Gatt et al., 2011; Koolen et al., 2013; Pechmann, 1989; Sedivy, 2003).

2.2 Cross-linguistic variation

Linear ordering of DPs varies cross-linguistically, and there is empirical evidence that this variation patterns with differing rates of overmodification across languages. In particular, Rubio-Fernández and collaborators (Rubio-Fernández, 2016; Rubio-Fernández et al., in press) have found that speakers of Spanish—a language that obligatorily places color adjectives post-nominally in single-modifier DPs (e.g. el vestido azul—‘the blue dress’)—produce redundant color modifiers less frequently than do speakers of English.

The empirical picture on cross-linguistic redundant modification is far from complete. The status of redundant modification in complex (>1 adjective) DPs is basically unknown beyond English. However, the model should minimally account for the lower rates of postnominal redundant color modification compared to prenominal redundant color modification (consistent with Rubio-Fernández’s results for Spanish).

From her Spanish and English results, Rubio-Fernández (2016) argues that redundant modification is positively related to the marginal benefit of producing the modifier in facilitating a listener’s search for the intended referent. This marginal benefit is lower in Spanish relative to English because adjectival modification occurs relatively late in the linear order of the DP, after other informative
forms—most importantly, the noun—have been produced. If this is correct, then we might expect an overall dispreference for redundant modification in languages for which modification is obligatorily postnominal. Indeed, this prediction is borne out by our model for one postnominal system we explore.

Given the existing empirical work on redundant modification in Spanish with single-modifier DP structures, a natural next step would be to explore the predictions of the model for that language in complex DP structures. However, there appears to be substantial variation—both in the theoretical literature and among four Spanish native speakers we consulted for this project—regarding linear ordering preferences in complex DPs. We return to this variation in Section 5. For the time being we only consider one type of modification structure: Scontras et al. (2020) report that many Spanish speakers allow for a complex DP structure where the size adjective follows the color adjective, a judgment corroborated by the translation of the small blue pin provided by two of our four native Spanish speakers in (1):

\[\text{La tachuela azul pequeña} \]

\[\text{‘The small blue pin’} \]

(1) is an instance of fully postnominal modification, with both adjectives coming after the noun tachuela (pin). When comparing cross-linguistic predictions of existing models of referring expression choice in Section 3, we will focus on a hypothetical idiolect of Spanish (we’ll call it Spanish-postnom)—a shorthand for Spanish-postnominal, which prefers this attested pattern of modification in complex DP structures. Comparing English to Spanish-postnom. is sufficient to demonstrate whether existing computational models are capable of making cross-linguistic predictions in general.

3 Previous computational theories

To what extent do previous computational theories of referring expression production predict the color-size asymmetry and cross-linguistic variation in overmodification? We focus on providing a qualitative assessment of the Rational Speech Act model proposed by Frank and Goodman (2012) and extensions thereof.\(^2\)

\(^2\)A non-RSA model of redundant modification is proposed by van Gompel et al. (2019). Their PRO (probabilistic referential overspecification) model captures the color/size asymmetry for languages with prenominal modifiers.

3.1 A note about utterance alternatives

We assume separate sets of utterance alternatives for the SS and CS scenes (displayed in Figure 1), comprised in each case of all possible licit DPs that a) can be composed by combining big/small, blue/red, and pin (or their equivalent Spanish translations); and b) truthfully describe one of images in the scene. We provide the English glosses of the Spanish DPs in Figure 1, omitting definite determiners for readability.

We assume that English exclusively permits prenominal adjectival modification of nouns (e.g. the blue pin but not *the pin blue). We also assume that English permits multiple modifiers in a single DP (e.g. the big blue pin), and that speakers of English display robust adjective ordering preferences: complex DPs with both color and size adjectives place color adjectives closest to the head noun (Dixon, 1982; Sproat and Shih, 1991). Recent work provides empirical support for this generalization from the theoretical literature (Scontras et al., 2017; Hahn et al., 2018; Scontras et al., 2019).

Conversely, we will make the simplifying assumption that the Spanish-postnom. idiolect permits postnominal modification exclusively. We assume that the construction with adjectives in the reverse order - la tachuela pequeña azul, which flips the order of the size and color adjective - is wholly unavailable; none of our native speaker consultants offered this construction as a possible translation of the small blue pin.

Our Spanish native speaker judgments are consistent with the observation that ordering preferences in postnominal-modifying languages tend to ‘mirror’ the preferences seen in prenominal-modifying languages (Hetzron 1978; Sproat and Shih 1991; for recent experimental evidence from Arabic see Kachakeche and Scontras 2020). Scontras et al. (2020) provide evidence that this holds for Spanish speakers, who disprefer la tachuela pequeña azul (which flips the order of the size and color adjective). As with English, we build this preference into the model and rule out la tachuela pequeña azul as a possible alternative in Spanish-postnom.

3.2 Standard (S-)RSA

We begin with Frank and Goodman (2012)’s ‘standard’ (S-)RSA model of referring expression production, which has been shown previously to capture neither redundant modification (Gatt et al., 2014; Degen et al., 2020) nor cross-linguistic var-
In S-RSA, speakers are modeled as conditional probability distributions over utterances given intended referents. To model speakers in this way, we first define a ‘literal’ semantic listener L_0 as a conditional distribution over referents R given an observed utterance u from an available set of utterances U. The probability of L_0 inferring r given u is proportional to the output of applying $[[u]]^D$ to r, multiplied by the listener’s prior beliefs $P(r)$ about the probability of r being the intended referent. $[[.:]^D$ is a Discrete semantic interpretation function whose outputs are values in $\{0, 1\}$:

$$P_{L_0}(r|u) \propto [[u]]^D(r) \cdot P(r)$$

Formally, we take utterances in S-RSA to be unordered sets of the lexical items i that comprise the utterance. We assume an intersective semantics for adjectives and nouns: that is, we first compute discrete Boolean truth values $\{0, 1\}$ for each lexical item i in u by determining whether i is true or false of the referent r. This is achieved with a discrete lexical interpretation function L^D. We then take the product of values computed for each item in the u to retrieve a truth value for u:

$$L^D(r, i) = \begin{cases} 1 & \text{if } i \text{ is true of } r \\ 0 & \text{otherwise} \end{cases}$$

$$[[u]]^D(r) = \prod_{i \in u} L^D(r, i)$$

In what follows, we assume that this literal interpreter has uniform prior beliefs over all and only the visible referents in the context. On this assumption, L_0 assigns zero probability to referents that are truth-conditionally incompatible with the observed utterance and equal probability to all other referents. For example, in the SS context, $blue$ pin is true of two referents—$o_{small, blue}$ and $o_{big, blue}$—so $P_{L_0}(o_{small, blue}|blue$ $pin) = 0.5$ and $P_{L_0}(o_{big, blue}|blue$ $pin) = 0.5$. In the CS context, $blue$ pin is true only of $o_{small, blue}$, so $P_{L_0}(o_{small, blue}|blue$ $pin) = 1$.

The probability of speaker S_1 producing utterance u given intended referent r is modeled as S_1 soft-maximizing the utility of producing u:

$$P_{S_1}(u|r) \propto e^{\alpha [\ln P_{L_0}(r|u) - C(u)]}$$

In particular, the probability of producing u is positively related to the probability that observing u would lead L_0 to infer r and is negatively related to utterance production cost $C(u)$. The conditional distribution over utterances is further modulated by an optimality parameter α: a high α value increases the difference between high-probability and low-probability utterances; an infinite α value corresponds to a utility-maximizing agent.

Suppose that the speaker finds herself in the SS context—in which case she has at her disposal all of the English utterances provided in the lefthand column corresponding to the SS context in Figure 1—or in the CS context, in which case her English utterance choices are provided in the righthand column. We assume a simple intersective semantics for the words that make up the possible utterances; e.g. $small$ $blue$ pin is true of a referent iff that referent is small, blue, and a pin. We assume a cost of 0 for all utterances. Finally, we set α to 30 (though changing cost and alpha does not change the predictions for S-RSA).

Under these parameter value assumptions, $P_{S_1}(small$ $blue$ $pin|o_{small, blue})$ has the same value in the SS context and the CS context (see Figure 2); in other words, S-RSA predicts equal rates of

The values in this and subsequent figures were calculated with WebPPL (Goodman and Stuhlmüller, 2014). All code...
redundant color and redundant size modification, which furthermore is never predicted to exceed the rate of non-redundant modification. The only way to break this symmetry in the desired direction is to impose asymmetric costs on color and size adjectives, which is empirically and conceptually unmotivated (see Degen et al. 2020 for discussion).

3.3 Continuous (C-)RSA

To capture that speakers routinely overmodify, and that they do so asymmetrically with color vs. size adjectives, Degen et al. (2020) propose an update to the semantic interpretation function that captures the intuition that certain adjectives are more noisy/less reliable than others. On their proposal,

\[
[[u]]^C(r) = \begin{cases}
 v^i & \text{if } i \text{ is true of } r \\
 1 - v^i & \text{otherwise}
\end{cases}
\]

\[
P_{I\text{incr}}(r|u) \propto [[u]]^C(r) \cdot P(r)
\]

\[
\mathcal{X}^D(c, i, r) = \frac{|\{[u]:[[u]]^D(r)\} \cap u \text{ is a continuation of } c+i|}{|u:u \text{ is a continuation of } c+i|}
\]

\[
S_{\text{INCR}}^L(i; c, r) \propto e^{\alpha(U_{\text{incr}}(r); C(i))}
\]

\[\text{can be accessed at } \text{https://github.com/bwaldon/crossling_reference.}\]

color modification than redundant size modification. This is because color adjectives are less ‘noisy’ than size adjectives. In the SS scene, the expected utility of small in uniquely establishing reference to \(o_{\text{small,blue}}\) outweighs the expectation that the adjective will fail due to its noisiness. The dynamics change in the CS scene, where small’s expected utility is lower due to the fact it is true of two objects in the scene.

A similar trade-off obtains for redundant color modification, but there is an overall lower expectation that blue will fail, boosting the probability of its production all else equal compared to small. This model thus captures the color/size overmodification asymmetry. However, because semantic interpretation is not sensitive to the linear order of lexical items, the model fails to predict any cross-linguistic variability (similar to S-RSA).

3.4 Incremental (I-)RSA

Cohn-Gordon et al. (2018b) propose a different revision to S-RSA, whereby listeners are modeled as conditional distributions over referents given observation of incrementally-produced sentences. Below, \(c\) is a context—a possibly empty sequence of words—and \(i\) is a lexical item observed after \(c\).

\[
\mathcal{X}^D(c, i, r) = \frac{|\{[u]:[[u]]^D(r)\} \cap u \text{ is a continuation of } c+i|}{|u:u \text{ is a continuation of } c+i|}
\]

The outputs of \(\mathcal{X}^D\) may be any real value on the interval \([0, 1]\), but we apply the superscript \(D\) because this continuous value is computed using the discrete semantic interpretation function for utterances that was defined for the S-RSA model.

Speakers in turn are modeled as incremental decision-makers, formally as conditional distributions over lexical items given a context \(c\) of items already produced and an intended referent \(r\):\(^4\)

\[
S_{\text{INCR}}^L(i; c, r) \propto e^{\alpha(U_{\text{incr}}(r); C(i))}
\]

\(^4\)We discuss the word-level implementation of I-RSA, though see Cohn-Gordon et al. (2018a) for a character-level variant which makes use of continuous semantic values computed from a language model trained on image caption data.
Utterance-level probabilities are computed by applying the chain rule to the incremental speaker function. Unlike with S-RSA and C-RSA, utterances are ordered sequences of lexical items, and \(i_j \) denotes the \(j \)-th lexical item in \(u \):

\[
S_1(u|r) = \prod_{j=1}^{n} S_1^{\text{INCR}}(i_j | c = [i_1 \ldots i_{j-1}], r)
\]

To compare I-RSA to the other models, we must make some principled modifications to the parameter values assumed thus far. First, because the optimality parameter \(\alpha \) operates at the sub-sentential level in the incremental model, high values of \(\alpha \) quickly give rise to very extreme distributions. Therefore, we lower \(\alpha \) to 7. Lastly, following Cohn-Gordon et al. (2018b), we bookend our utterances with phonologically null \(\text{START} \) and \(\text{STOP} \) tokens.

We assume that each mention of an adjective incurs a cost of 0.1, which would not change the qualitative pattern of predictions for S-RSA and C-RSA but allows for \(S_1^{\text{INCR}} \) to balance informativity against cost at the word level.

Examining the predictions (see Figure 2), we see that the incremental RSA model meets two of our desiderata: first, it correctly predicts the color/size asymmetry in English; second, it predicts that prenominal redundant color modification is more frequent than postnominal redundant color modification. However, the marginal utility of producing a color or size adjective in both languages is purely a function of the alternative options available to the speaker at a given step in utterance production. That is, color and size are assumed to have equal communicative utility all else equal.

Consequently, the model predicts that Spanish-postnom. and English should mirror one another with respect to redundant adjective use in the SS/CS scenes. That is, the probability of a redundant color adjective in Spanish-postnom. is predicted to be the same as the probability of a redundant size adjective in English, and vice versa (the first row of Figure 3 illustrates this symmetry in I-RSA’s predictions).

4 Continuous-incremental (CI-)RSA

Our proposal is a simple one: to leverage the incremental architecture proposed by Cohn-Gordon et al. (2018b) with a word-level continuous semantics function following Degen et al. (2020). We use the \(S_1 \) speaker definition from I-RSA, but we redefine the string interpretation function employed by the literal listener such that string meanings are computed from continuous rather than discrete utterance meanings, as in C-RSA. To compute this new string meaning, we take the sum of the (continuous) semantic values of all full-utterance continuations and divide by the number of continuations.

\[
\lambda^\text{C}(c, i, r) = \sum_{|u| : u \text{ is a continuation of } c+i}^{n} \frac{\lambda^\text{INCR}(r|c, i)}{\sum_{|u| : u \text{ is a continuation of } c+i}}
\]

We redefine \(L_0^{\text{INCR}} \) such that the probability of a referent \(r \) given observation of \(i \) in context \(c \) is proportional to the continuous string meaning of \(c+i \) applied to \(r \). Leaving all other parameter values the same as in the incremental RSA implementation above, and assuming semantic values for color/size adjectives identical to those used in the C-RSA implementation, we can now systematically compare our model against its predecessors.

CI-RSA—like I-RSA and C-RSA—predicts the color/size asymmetry in English. It also predicts—like I-RSA—higher rates of redundant color adjective use in English over Spanish-postnom. However, the new model predicts language-level asymmetries in redundant adjective use: that is, across the SS and CS scenes, it predicts a lower overall redundant modification probability in Spanish-postnom. than in English.

This model therefore meets the motivating desiderata: it captures both the observed color/size asymmetry in English as the result of reasoning about noisy modifiers; and it predicts cross-linguistic variation in overmodification that is consistent with the current empirical landscape. Moreover, CI-RSA (like I-RSA) with the above assumed parameter values makes a perhaps surprising prediction: the color/size asymmetry should flip in Spanish (and postnominal languages in general). To the best of our knowledge, it is unknown whether this prediction is borne out empirically due to the absence of empirical data on the relative rates of size and color overmodification in postnominal modifier languages.

5 Modeling variation within Spanish

Spanish speakers appear to be quite diverse regarding their complex DP preferences. In addition to the postnominal modification assumed above for
Figure 3: Transitional probabilities from one word to another for the incremental speaker \(S_1^{\text{INCR}} \). Multiplying bolded nodes yields probability of producing \(\text{small blue pin} \). Unlike CI-RSA, I-RSA predicts symmetry in English redundant color modification (left column) and Spanish-postnom. redundant size modification (right column). We omit the \(\text{START} \) and \(\text{STOP} \) tokens when probability = 1. In I-RSA, transitions can have exactly 0 probability, in which case later transitions all have equal probability.

Figure 4: Predicted utterance probabilities for \(\text{small blue pin} \) (and its translations) in the size-sufficient (left panels) and color-sufficient (right panels) scenes across our four languages of focus, under varying semantic values for color and size in CI-RSA. Rows indicate varying \(\alpha \) values. For ‘Spanish-postnom.-conj.’, we report the probability of producing either (2a) \(\text{pin small and blue} \) or (2b) \(\text{pin blue and small} \). We assume a cost of 0.1 on adjectives.

Spanish-postnom., Spanish also allows for post-nominal modification with conjunction (where adjective ordering preferences are suspended, see Ford and Olson 1975 and Byrne 1979 for evidence from English speakers; Rosales Jr and Scontras 2019 for Spanish). (2a) and (2b) exemplify this strategy.\(^6\)

\(^6\)Conversely, the authors report that English speakers exhibit the same basic ordering preference of size adjectives before color adjectives even when conjunction is present.
6 Discussion and conclusion

This work highlights the empirical gaps that remain regarding our understanding of referring expression production cross-linguistically. More work is needed, for example, to understand when and how redundant modification manifests in Spanish and other postnominal languages, and what complex DP structures are in fact produced by Spanish speakers in referring contexts.

While we explored predictions for three hypothetical Spanish idiolects, it is implausible to assume that real Spanish speakers display an overwhelming preference for only one of the three possible strategies over the other two (e.g., most Spanish speakers are likely to employ both the split structure and at least one of the postnominal structures). Furthermore, one consultant reports that in the SS context, the most natural translation of *the small blue pin* features the diminutive morpheme -ito/a affixed to the noun (*la tachuelita azul*). In this paper, of course, we exclusively consider redundant lexical modifiers. More empirical work is needed to understand the factors that may give rise to individual-level and context-specific preferences for particular constructions, and for the time being we have nothing to say about sub-lexical realizations of modification.

Moreover, there is some reason to believe that not all complex DPs express equivalent meanings: Laenzlinger (2000), for example, notes a difference in meaning between the prenominally-modified simple DP *un grand homme* ‘a great man’ and the postnominal *un homme grand* ‘the tall man’ in French, a Romance language closely related to Spanish. More work is needed to understand whether pre-nominal size modification in Spanish gives rise to similar (or more subtle) meaning changes in complex Spanish DPs in referring contexts, and whether this change in meaning is subject to population-level variation.8

Further factors that affect the probability of redundant modification that models of referring expression production should capture include scene variation (Davies and Katsos, 2013; Koolen et al.,...
2013; Rubio-Fernandez et al., in press) and feature typicality (Rubio-Fernández, 2016; Sedivy, 2003; Westerbeek et al., 2015; Kreiss and Degen, 2020). Degen et al. (2020) show that C-RSA captures scene variation effects, and this should be true for CI-RSA as well. They also show that an extension of C-RSA captures feature typicality effects; the current formulation of CI-RSA does not.

Cross-linguistic empirical investigations of referring expression production should also investigate redundant modification outside the domains of size and color. There is evidence from English, for example, that redundant material adjectives (e.g. metal, wooden) are less likely to be produced than are redundant color adjectives (Sedivy, 2003). Kursat & Degen (forthcoming) argue that this asymmetry is explained in part by the relative difficulty of perceiving an object’s material compared to perceiving its color. However, the robustness of this effect has yet to be investigated beyond English, and it remains to be seen whether CI-RSA can account for the cross-linguistic patterns that emerge.

We acknowledge furthermore that the contexts we investigate all feature objects of the same type; thus, we assume that the noun has no communicative value on its own. We present these contexts in the interest of simplicity, though the predictions of CI-RSA should be evaluated in contexts where the noun distinguishes between possible objects.

While the best we can do at present is to provide a qualitative assessment of the model against existing alternatives on the few existing data points as we have done in this paper, an advantage of probabilistic pragmatic theories such as those that extend the RSA framework is that they can be quantitatively evaluated against experimental data. Degen et al. (2020) recently evaluated the C-RSA model in this way and report that the model provides a good fit for English data collected in an interactive reference game study. Their paradigm is a candidate for cross-linguistic replication studies, so that CI-RSA can be rigorously compared against its RSA antecedents. We leave this to future work.

References

Robert MW Dixon. 1982. Where have all the adjectives gone?: and other essays in semantics and syntax, volume 107. de Gruyter.

