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Abstract

Memory limitations are known to constrain language comprehension and production, and

have been argued to account for crosslinguistic word order regularities. However, a

systematic assessment of the role of memory limitations in language structure has proven

elusive, in part because it is hard to extract precise large-scale quantitative generalizations

about language from existing mechanistic models of memory use in sentence processing.

We provide an architecture-independent information-theoretic formalization of memory

limitations which enables a simple calculation of the memory efficiency of languages. Our

notion of memory efficiency is based on the idea of a memory–surprisal tradeoff : a certain

level of average surprisal per word can only be achieved at the cost of storing some amount

of information about past context. Based on this notion of memory usage, we advance the

Efficient Tradeoff Hypothesis: the order of elements in natural language is under pressure

to enable favorable memory-surprisal tradeoffs. We derive that languages enable more

efficient tradeoffs when they exhibit information locality: when predictive information

about an element is concentrated in its recent past. We provide empirical evidence from

three test domains in support of the Efficient Tradeoff Hypothesis: a reanalysis of a

miniature artificial language learning experiment, a large-scale study of word order in

corpora of 54 languages, and an analysis of morpheme order in two agglutinative

languages. These results suggest that principles of order in natural language can be

explained via highly generic cognitively motivated principles and lend support to

efficiency-based models of the structure of human language.

Keywords: Language universals, sentence processing, information theory
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Modeling Word and Morpheme Order in Natural Language as an Efficient

Tradeoff of Memory and Surprisal

Introduction

Natural language is a powerful tool that allows humans to communicate, albeit

under inherent cognitive resource limitations. Here, we investigate whether human

languages are grammatically structured in a way that reduces the cognitive resource

requirements for comprehension, compared to counterfactual languages that differ in

grammatical structure.

The suggestion that the structure of human language reflects a need for efficient

processing under resource limitations has been present in the linguistics and cognitive

science literature for decades (Berwick & Weinberg, 1984; Chomsky, 2005; Gibson et al.,

2019; Hahn, Jurafsky, & Futrell, 2020; Hawkins, 1994; Jaeger & Tily, 2011; Yngve, 1960).

The idea has been summed up in Hawkins’s (2004) Performance–Grammar

Correspondence Hypothesis (PGCH), which holds that grammars are structured so

that the typical utterance is easy to produce and comprehend under performance

constraints.

One major source of resource limitation in language processing is incremental

memory use. When producing and comprehending language in real time, a language user

must keep track of what they have already produced or heard in some kind of incremental

memory store, which is subject to resource constraints. These memory constraints have

been argued to underlie various locality principles which linguists have used to predict

the orders of words within sentences and morphemes within words (e.g. Behaghel, 1932;

Bybee, 1985; Givón, 1985; Hawkins, 1994, 2004, 2014; Rijkhoff, 1990; Temperley & Gildea,

2018). The idea is that language should be structured to reduce long-term dependencies of

various kinds, by placing elements that depend on each other close to each other in linear

order. That is, elements of utterances which are more ‘relevant’ or ‘mentally connected’ to

each other are closer to each other.
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Our contribution is to present a new, highly general formalization of the

relationship between sequential order and incremental memory in language processing,

from which we can derive a precise and empirically testable version of the idea that

utterance elements which depend on each other should be close to each other. Our

formalization allows us to predict the order of words within sentences, and morphemes

within words directly by the minimization of memory usage.

We formalize the notion of memory constraints in terms of what we call the

memory–surprisal tradeoff : the idea that the ease of comprehension depends on the

amount of computational resources invested into remembering previous linguistic elements,

e.g., words. Therefore, there exists a tradeoff between the quantity of memory resources

invested, and the ease of language processing. The shape of this tradeoff depends on the

grammar of a language, and in particular the way that it structures information in time.

We characterize memory resources using the theory of lossy data compression (Berger,

2003; Cover & Thomas, 2006).

Within our framework, we prove a theorem showing that lower memory

requirements result when utterance elements that depend on each other statistically are

placed close to each other. This theorem does not require any assumptions about the

architecture or functioning of memory, except that it has a bounded capacity. Using this

concept, we introduce the Efficient Tradeoff Hypothesis: Order in natural language is

structured so as to provide efficient memory–surprisal tradeoff curves. We provide evidence

for this hypothesis in three studies. We demonstrate that word orders with short

dependencies do indeed engender lower working memory resource requirements in toy

languages studied in the previous literature, and we show that real word orders in corpora

of 54 languages have lower memory requirements than would be expected under artificial

baseline comparison grammars. Finally, we show that we can predict the order of

morphemes within words in two languages using our principle of the minimization of

memory usage.
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Our work not only formalizes and tests an old idea in functional linguistics and

psycholinguistics, it also opens up connections between those fields and the statistical

analysis of natural language (Bentz, Alikaniotis, Cysouw, & Ferrer-i-Cancho, 2017;

Debowski, 2011; Lin & Tegmark, 2017), and more broadly, between linguistics and fields

that have studied information-processing costs and resource requirements in brains (e.g.,

Friston, 2010) and general physical systems (e.g., Still, Sivak, Bell, & Crooks, 2012).

Background

A wide range of work has argued that information in natural language utterances is

ordered in ways that reduce memory effort, by placing elements close together when they

depend on each other in some way. Here, we review these arguments from linguistic and

cognitive perspectives.

Dependency locality and memory constraints in psycholinguistics

When producing and comprehending language in real time, a language user must

keep track of what she has already produced or heard in some kind of incremental memory

store, which is subject to resource constraints. An early example of this idea is Miller and

Chomsky (1963), who attributed the unacceptability of multiple center embeddings in

English to limitations of human working memory. Concurrent and subsequent work studied

how different grammars induce different memory requirements in terms of the number of

symbols that must be stored at each point to produce or parse a sentence (Abney &

Johnson, 1991; Gibson, 1991; Resnik, 1992; Yngve, 1960). In psycholinguistic studies,

memory constraints typically manifest in the form of processing difficulty associated with

long-term dependencies. For example, at the level of word-by-word online language

comprehension, there is observable processing difficulty at moments when it seems that

information about a word must be retrieved from working memory. This difficulty increases

when there is a great deal of time or intervening material between the point when a word is

first encountered and the point when it must be retrieved from memory (Balling & Kizach,
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2017; Bartek, Lewis, Vasishth, & Smith, 2011; Gibson, 1998, 2000; Gibson & Thomas,

1999; Lewis & Vasishth, 2005; McElree, 2000; Nicenboim, Vasishth, Gattei, Sigman, &

Kliegl, 2015). That is, language comprehension is harder for humans when words which

depend on each other for their meaning are separated by many intervening words. This

idea is most prominently associated with the Dependency Locality Theory of human

sentence processing (Gibson, 2000).

For example, Grodner and Gibson (2005) studied word-by-word reading times in a

series of sentences such as (1) below.

(1) a. The administrator who the nurse supervised. . .

b. The administrator who the nurse from the clinic supervised. . .

c. The administrator who the nurse who was from the clinic supervised. . .

In these sentences, the distance between the noun administrator and the verb supervised is

successively increased. Grodner and Gibson (2005) found that as this distance increases,

there is a concomitant increase in reading time at the verb supervised and following words.

The hypothesized reason for this reading time pattern is based on memory

constraints. The idea goes: at the word supervised, a comprehender who is trying to

compute the meaning of the sentence must integrate a representation of the verb supervised

with a representation of the noun administrator, which is a direct object of the verb. This

integration requires retrieving the representation of administrator from working memory. If

this representation has been in working memory for a long time—for example as in

Sentence 1c as opposed to 1a—then the retrieval is difficult or inaccurate, in a way that

manifests as increased reading time. Essentially, there exists a dependency between the

words administrator and supervised, and more excess processing difficulty is incurred the

more the two words are separated; this excess difficulty is called a dependency locality

effect.
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The existence of dependency locality effects in human language processing, and

their connection with working memory, are well-established (Fedorenko, Woodbury, &

Gibson, 2013). These locality effects in online processing mirror locality effects in word

order, described below.

Locality and cross-linguistic universals of order

Dependency locality in word order means that there is a pressure for words which

depend on each other syntactically to be close to each other in linear order. There is ample

evidence from corpus statistics indicating that dependency locality is a real property of

word order across many languages (Ferrer-i-Cancho, 2004, 5; Futrell, Mahowald, & Gibson,

2015a; Gildea & Temperley, 2007, 2010; Liu, 2008; Liu, Xu, & Liang, 2017; Temperley &

Gildea, 2018). Hawkins (1994, 2003) formulates dependency locality as the Principle of

Domain Minimization, and has shown that this principle can explain cross-linguistic

universals of word order that have been documented by linguistic typologists for decades

(Greenberg, 1963). Such a pressure can be motivated in terms of the documented online

processing difficulty associated with long-term dependencies among words: dependency

locality in word order means that online processing is easier.

An example is order alternation in postverbal constituents in English. While NP

objects ordinarily precede PPs (2a, example from Staub, Clifton Jr, and Frazier (2006)),

this order is less preferred when the NP is very long (2c), in which case the inverse order

becomes more felicitous (2d). The pattern in (2d) is known as Heavy NP Shift (Arnold,

Losongco, Wasow, & Ginstrom, 2000; Ross, 1967; Stallings & MacDonald, 2011).

Compared to (2c), it reduces the distance between the verb “ate” and the PP, while only

modestly increasing the distance between the verb and object NP.

(2) a. Lucy ate [the broccoli] with a fork.

b. ? Lucy ate with a fork [the broccoli].
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c. Lucy ate [the extremely delicious, bright green broccoli] with a fork .

d. Lucy ate with a fork [the extremely delicious, bright green broccoli].

Locality principles have also appeared in a more general form in the functional

linguistics literature, in the form of the idea that elements which are more ‘relevant’ to

each other will appear closer to each other in linear order in utterances (Behaghel, 1932;

Bybee, 1985; Givón, 1985; Givón, 1991; Newmeyer, 1992). Here, ‘elements’ can refer to

words or morphemes, and the definition of ‘relevance’ varies. For example, Givón (1985)’s

Proximity Principle states that elements are placed closer together in a sentence if they

are closer conceptually. Applying a similar principle, Bybee (1985) studied the order or

morphemes within words across languages, and argued that (for example) morphemes that

indicate the valence of a verb (whether it takes zero, one, or two objects) are placed closer

to the verb root than morphemes that indicate the plurality of the subject of the verb,

because the valence morphemes are more ‘relevant’ to the verb root.

While these theories are widespread in the linguistics literature, there exists to date

no quantifiable definition of ‘relevance’ or ‘being closer conceptually’. One of our

contributions is to derive such a notion of ‘relevance’ from the minimization of memory

usage during language processing.

Architectural assumptions

The connection between memory resources and locality principles relies on the idea

that limitations in working memory will give rise to difficulty when elements that depend

on each other are separated at a large distance in time. In previous work, this idea has been

motivated in terms of specific assumptions about the architecture of memory. For example,

models of memory in sentence processing differ in whether they assume limitations in

storage capacity (e.g., ‘memory cost’ in the model of Gibson, 1998) or the precision with

which specific elements can be retrieved from memory (e.g. Lewis & Vasishth, 2005).

Furthermore, in order to derive the connection between memory usage in such models and
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locality in word order, it has been necessary to stipulate that memory representations or

activations decay over time in some way to explain why longer dependencies are harder to

process. The question remains of whether these assumptions about memory architecture

are necessary, or whether word orders across languages are optimized for memory

independently of the implementation and architecture of human language processing.

In this work, we adopt an information-theoretic perspective on memory use in

language processing, which abstracts away from the details of memory architecture. Within

our framework, we will establish the connection between memory resources and locality

principles by providing general information-theoretic lower bounds on memory use. We

quantify memory resources in terms of their information-theoretic capacity measured in

bits, following models proposed for working memory in other domains (Brady, Konkle, &

Alvarez, 2008, 2009; Sims, Jacobs, & Knill, 2012). Our result immediately entails a link

between locality and boundedness of memory, following only from the stipulation that

memory is finite in capacity. In particular, our model does not require any assumption that

memory representations or activations decay over time (as was required in previous work:

Futrell, Gibson, & Levy, 2020; Gibson, 1998; Lewis & Vasishth, 2005). We will then show

empirical evidence that the orders of words and morphemes in natural language are

structured in a way that reduces our measure of memory use compared to the orders of

counterfactual baseline languages.

The remainder of the paper is structured as follows. We first introduce the

memory-surprisal tradeoff and introduce our Efficient Tradeoff Hypothesis. Then, we test

the Efficient Tradeoff Hypothesis in three studies. In Study 1, we qualitatively test the

Hypothesis in a reanalysis of word orders emerging in a miniature artificial language study

(Fedzechkina, Chu, & Jaeger, 2017). In Study 2, we quantitatively test the Hypothesis in a

large-scale study of the word order of 54 languages. In Study 3, we test the Hypothesis on

morpheme order in Japanese and Sesotho. Finally, we discuss the implications and

limitations of the reported results.
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Memory-Surprisal Tradeoff

In this section, we introduce the main concept and hypothesis of the paper. We

provide a technical definition of the memory–surprisal tradeoff curve, and we prove a

theorem showing that more efficient memory–surprisal tradeoffs are possible in languages

exhibiting information locality, i.e., in languages where words that depend on each other

are close to each other. This theorem establishes the formal link between memory efficiency

in online processing and locality in word order.

An information-theoretic model of online language comprehension

We begin developing our model by considering the process of language

comprehension, where a listener is processing a stream of words uttered by an interlocutor.

Experimental research has established three properties of online language comprehension:

(1) listeners maintain some information about the words received so far in incremental

memory, (2) listeners form probabilistic expectations about the upcoming words (e.g.

Altmann & Kamide, 1999; Kuperberg & Jaeger, 2016; Staub & Clifton Jr, 2006), and (3)

words are easy to process to the extent that they are predictable based on a listener’s

memory of words received so far (Futrell, Gibson, & Levy, 2020; Hale, 2001; Levy, 2008).

See General Discussion for discussion of how our model is related to theories that do not

explicitly make these assumptions.

We formalize these three observations into postulates intended to provide a

simplified picture of what is known about online language comprehension. Consider a

listener comprehending a sequence of words w1, . . . , wt, . . . , wn, at an arbitrary time t.

1. Comprehension Postulate 1 (Incremental memory). At time t, the listener has an

incremental memory state mt that contains her stored information about previous

words. The memory state is characterized by a memory encoding function M

such that mt = M(wt−1,mt−1).
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2. Comprehension Postulate 2 (Incremental prediction). The listener has a subjective

probability distribution at time t over the next word wt as a function of the memory

state mt. This probability distribution is denoted P (wt|mt).

3. Comprehension Postulate 3 (Linking hypothesis). Processing a word wt incurs

difficulty proportional to the surprisal of wt given the memory state mt:1

Difficulty ∝ − log2 P (wt|mt). (1)

The claim that processing difficulty should be directly proportional to surprisal comes from

surprisal theory (Hale, 2001; Levy, 2008), an established psycholinguistic theory that can

capture reading time effects related to garden-path disambiguation, antilocality effects, and

effects of syntactic construction frequency. Surprisal is a robust linear predictor of reading

times in large-scale eye-tracking studies based on naturalistic text (Aurnhammer & Frank,

2019; Frank & Hoeks, 2019; Goodkind & Bicknell, 2018; Smith & Levy, 2013; Wilcox,

Gauthier, Hu, Qian, & Levy, 2020), and effects of surprisal have been observed for units as

small as phonemes (Gwilliams, King, Marantz, & Poeppel, 2020). There are several

converging theoretical arguments for surprisal as a measure of processing cost (Levy, 2008;

Smith & Levy, 2013). Surprisal theory is compatible with different views on the

mechanisms underlying prediction, and can reflect different mechanisms such as

preactivation and integration (Kuperberg & Jaeger, 2016). We do not assume that listeners

explicitly compute a full-fledged distribution P (wt|mt); we view P (wt|mt) as a

formalization of the probabilistic expectations that listeners form during comprehension.

Our expression (1) differs from the usual formulation of surprisal theory in that we

consider predictability based on a (potentially lossy or noisy) memory representation mt,

rather than predictability based on the true complete context w1, . . . , wt−1. The

1 In this paper, all logarithms are taken to base 2. As choosing another basis (e.g., e) would only result in

multiplication with a proportionality constant, this assumption does not impact the generality of this

linking hypothesis.
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generalization to lossy memory representations is necessary to capture empirically observed

effects of memory limitations on language processing, such as dependency locality and

structural forgetting (Futrell, Gibson, & Levy, 2020).

In this work, we are interested in using theories of processing difficulty to derive

predictions about languages as a whole, not about individual words or sentences. Therefore,

we need a measure of the processing difficulty associated with a language as a whole. For

this, we consider the average surprisal per word in the language. We call this quantity the

average surprisal of a language given a memory encoding function M , denoted SM .

Crucially, the listener’s ability to predict upcoming words accurately depends on

how much she remembers about previous words. As the precision of her memory increases,

the accuracy of her predictions also increases, and the average surprisal SM for each

incoming word decreases. Taking an information-theoretic perspective, we can think about

the amount of information (measured in bits) about previous words stored in the listener’s

memory state. This quantity of information is given by the entropy of the memory state,

which we denote HM . As the listener stores more and more bits of information about the

previous words her memory state, she can achieve lower and lower surprisal values for the

upcoming words. This tradeoff between memory and surprisal is the main object of study

in this paper.

The memory–surprisal tradeoff curve answers the question: for a given amount

of information about previous words HM stored in the listener’s memory state, what is the

lowest achievable average surprisal SM? Two example tradeoff curves are shown in

Figure 1. In general, as the listener stores more information about previous words in her

memory state, her lowest achievable average surprisal can only decrease. So the curve is

always monotonically decreasing. However, the precise shape of the tradeoff curve depends

on the structure of the language being predicted. For example, Figure 1 shows how two

hypothetical languages might engender different tradeoff curves, with Language A allowing

more favorable tradeoffs than Language B. That is, for Language A, it is possible to
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achieve lower processing difficulty while investing less memory resources than in Language

B.

4.5

4.0

3.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5

Language A

Language B

S
ur

pr
is

al

Memory (bits)
Figure 1

Example memory–surprisal tradeoff curves for two languages, A and B. Achieving an

average surprisal of 3.5 bits requires storing at least 1.0 bits in language A, while it requires

storing 2.0 bits in language B. Language A has a steeper memory–surprisal tradeoff than

Language B, and requires less memory resources to achieve the same level of processing

difficulty.

Main hypothesis

Having conceptually introduced the memory–surprisal tradeoff, we can state the

main hypothesis of this work, the Efficient Tradeoff Hypothesis.

Efficient Tradeoff Hypothesis:

The order of elements in natural language is

characterized by a distinctively steeper memory–surprisal

tradeoff curve, compared to other possible orders.

A steep tradeoff curve corresponds to memory efficiency, in the sense that it is possible to
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achieve a low level of processing difficulty (average surprisal SM) while storing a relatively

small amount of information about previous words (entropy of memory HM). We

hypothesize that this property is reflected in grammatical structure and usage preferences

across languages.

Formal definition of the memory–surprisal tradeoff

Here we provide the technical definition of the memory–surprisal tradeoff curve. Let

W be a stochastic process generating a stream of symbols extending indefinitely into the

past and future: . . . , w−2, w−1, w0, w1, w2, . . . . These symbols can represent words,

morphemes, or other units for decomposing sentences into a sequence of symbols. We

model this process as stationary (Doob, 1953), that is, the joint probability distributions of

symbols at different time points depend only on their relative positions in time, not their

absolute positions (see SI Section 1.1.1 for more on this modeling assumption).

Let M be a memory encoding function. We consider memory and surprisal costs at

an arbitrary time point t. Recall that the surprisal for a specific word wt after a past word

sequence . . . , wt−2, wt−1 encoded into a memory state mt is:

− log2 P (wt|mt).

The average surprisal of the process W under the memory encoding function M is

obtained by averaging over all possible past sequences . . . , wt−2, wt−1 with associated

memory states mt, and possible next words wt:

SM ≡ −
∑
wt,mt

P (mt)P (wt|mt) log2 P (wt|mt).

where wt ranges over possible symbols, and mt ranges over possible outputs of the memory

encoding function M . This quantity is known as the conditional entropy of wt given mt

(Cover & Thomas, 2006, p. 17):

SM = H[wt|mt].
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Because the process W is stationary, the average surprisal SM is independent of the choice

of t (see SI Section 1.1.2). The lowest possible average surprisal for W is attained when mt

perfectly encodes all previous observed words. This quantity is called the entropy rate of

W (Cover & Thomas, 2006, pp. 74–75):

S∞ ≡ H[wt| . . . , wt−2, wt−1],

which again is independent of t because W is stationary. We use the notation S∞ to

suggest this idea of unlimited resources. The entropy rate of a stochastic process is the

irreducible unpredictability of the process: the extent to which a stream of symbols

remains unpredictable even for a predictor with unlimited resources.

Because the memory state mt is a function of the previous words . . . , wt−2, wt−1, we

can prove by the Data Processing Inequality (Cover & Thomas, 2006, pp. 34–35) that the

entropy rate must be less than or equal to the average surprisal for any memory encoding

function M :

S∞ ≤ SM .

If the memory state mt stores all information about the previous words

. . . , wt−2, wt−1, then we have SM = S∞.

Having defined average surprisal, we now turn to the question of how to define

memory capacity. The average amount of information stored in the memory states mt is

the average number of bits required to encode mt. This is given by the entropy of the

stationary distribution over memory states, HM :

HM ≡ H[mt]

where

H[mt] = −
∑
m

P (mt = m) log2 P (mt = m)

where m runs over all possible states of the memory encoding mt. Again, because W is

stationary, this quantity does not depend on the choice of t (see SI Section 1.1.2).

We will be imposing bounds on HM and studying the resulting values of SM .
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Definition 1. The memory–surprisal tradeoff curve for a process W is the lowest

achievable average surprisal SM for each value of HM . Let R denote an upper bound on the

memory entropy HM ; then the memory–surprisal tradeoff curve as a function of R is given

by

D(R) ≡ min
M :HM≤R

SM , (2)

where the minimization is over all memory encoding functions M whose entropy HM is less

than or equal to R.

The memory state mt is generally a lossy representation of the true context of words

w1, . . . , wt−1, meaning that mt does not contain all the possible information about

w1, . . . , wt−1. The mathematical theory of lossy representations is rate–distortion theory

(for an overview and key results, see Cover & Thomas, 2006, pp. 301–347); this theory has

seen recent successful application in cognitive science and linguistics as a model of rational

action under resource constraints (Brady et al., 2009; Gershman, 2020; Schach, Gottwald,

& Braun, 2018; Sims, 2018; Sims et al., 2012; Zaslavsky, Kemp, Regier, & Tishby, 2018;

Zénon, Solopchuk, & Pezzulo, 2019). Rate–distortion theory studies curves of the form of

Eq. 2, which quantify tradeoffs between negative utility (‘distortion’) and information

(‘rate’).

Information locality

The shape of the memory–surprisal tradeoff is determined in part by the

grammatical structure of a language. Some hypothetical languages enable more efficient

tradeoffs than others by allowing a listener to store fewer bits in memory to achieve the

same level of average surprisal.

Here, we will demonstrate that the memory–surprisal tradeoff is optimized by

languages with word orders exhibiting a property called information locality.

Information locality means that words that depend on each other statistically are located
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(a)

Hi, how are you?

I1

I2

I3

X-3 X-2 X-1 X0

t

It

It is sunny outside.

gave the attempt up.He

I4

(b)

T

A

B

T

t

It

t It

t

Bits of memory:

Excess surprisal incurred:

Figure 2

(a) Conditional mutual information It captures how much predictive information about the

next word is provided, on average, by the word t steps in the past. (b) Here we illustrate

our theoretical result. We plot It (top) and tIt (bottom) as functions of t. For any choice of

T , a listener using B bits memory (bottom) to represent prior observations will incur at

least A bits of extra surprisal beyond the entropy rate (top).

close to each other in time. We will argue that information locality generalizes the

well-known word order principle of dependency locality.

We will make our argument by defining a lower bound on the memory–surprisal

tradeoff curve (Eq. 2). This lower bound represents an unavoidable cost associated with a

certain level of memory usage HM ; the true average surprisal SM might be higher than this

bound.

Our argument will make use of a quantity called mutual information. Mutual

information is the most general measure of statistical association between two random

variables. The mutual information between two random variables X and Y , conditional on

a third random variable Z, is defined as:

I[X : Y |Z] ≡
∑
x,y,z

P (x, y, z) log2
P (x, y|z)

P (x|z)P (y|z) . (3)
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Mutual information is always non-negative. It is zero when X and Y are conditionally

independent given Z, and positive whenever X gives any information that makes the value

of Y more predictable, or vice versa.

We will study the mutual information structure of natural language sentences, and

in particular the mutual information between words at certain distances in linear order.

We define the notation It to mean the mutual information between words at distance t

from each other, conditional on the intervening words:

It ≡ I[wt : w0|w1, . . . , wt−1].

This quantity, visualized in Figure 2(a), measures how much predictive information is

provided about the current word by the word t steps in the past. It is a statistical property

of the language, and can be estimated from large-scale text data.

Equipped with this notion of mutual information at a distance, we can now state

our theorem:

Theorem 1. (Information locality bound) For any positive integer T , let M be a memory

encoding function such that

HM ≤
T∑
t=1

tIt. (4)

Then we have a lower bound on the average surprisal under the memory encoding function

M :

SM ≥ S∞ +
∞∑

t=T+1
It. (5)

A formal proof based on the Comprehension Postulates 1–3 is given in SI Section

1.2. An intuitive argument, forming the basis of the proof, is the following. Suppose that a

comprehender predicting the t’th word wt uses an average of It bits of information coming

from a previous word w0. Then these bits must have been carried over t timesteps and thus

have occupied memory for t timesteps. Since this happens for every word in a sequence,

there are, at any given point in time, t such packets of information, each with an average

size of It bits, that have to be maintained, summing up to tIt. In the specific setting where
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M encodes information from a contiguous span of the past T words, the total amount of

encoded information thus sums up to ∑T
t=1 tIt, while information from longer contexts is

lost, increasing surprisal by ∑∞
t=T+1 It. While this informal argument specifically considers

a memory encoding function that utilizes information from a contiguous span of the past T

words, the formal proof extends this to all memory encoding functions M satisfying the

Comprehension Postulates.

Interpretation. The theorem means that a predictor with limited memory

capacity will always be affected by surprisal cost arising from long-term statistical

dependencies of length greater than T , for some finite T . This is why we call the result

‘information locality’: processes are easier to predict when most statistical dependencies

are short-term (shorter than some T ). Below we explain in more detail how this

interpretation matches the mathematics of the theorem.

The quantities in the theorem are illustrated visually in Figure 2. Eq. 4 describes a

memory encoding function which has enough capacity to remember the relevant

information from at most T words in the immediate past. The minimal amount of memory

capacity which would be required to retain this information is the sum ∑T
t=1 tIt, reflecting

the cost of holding It bits in memory for t timesteps up to t = T .

The information locality bound theorem says that the surprisal cost for this memory

encoding function is at least S∞ + ∑∞
t=T+1 It (Eq. 5). The first term S∞ is the entropy rate

of the process, representing the bits of information in the process which could not have

been predicted given any amount of memory. The second term ∑∞
t=T+1 It is the sum of all

the relevant information contained in words more than T timesteps in the past (see

Figure 2(b)). These correspond to bits of information in the process which could have been

predicted given infinite memory resources, but which were not, due to the limit on memory

usage.

The theorem gives a lower bound on the memory–surprisal tradeoff curve, meaning

that there is no memory encoding function M with capacity HM which achieves lower
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average surprisal than Eq. 5. In terms of psycholinguistics, if memory usage is bounded by

Eq. 4, then processing cost of at least Eq. 5 is inevitable. Importantly, the bound holds for

any memory encoding function M , including functions that do not specifically keep track

of a window of the past T words. The information locality bound theorem demonstrates in

a highly general way that language comprehension requires less memory resources when

statistical dependencies are mostly short-term.
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Figure 3

Listener’s memory–surprisal tradeoff for the two hypothetical languages in Figure 14.

Recall that the MoreEfficient language has a faster decay of conditional mutual information

It. Correspondingly, this figure shows that a listener can achieve lower average surprisal at

the same level of memory load.

Because processing long-term dependencies requires higher memory usage, the

theorem also implies that a language can be easier to process when most of the predictive

information about a word is concentrated close to that word in time—that is, when It falls

off rapidly as t→∞. When memory capacity is limited, then there must be some

timescale T such that a listener appears to be affected by excess surprisal arising from

statistical dependencies of length greater than T . A language avoids such cost to the extent
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that it avoids dependencies with a time-span larger than T .

We illustrate the theorem in Figure 14. We consider two hypothetical languages,

LessEfficient and MoreEfficient, where It := 5t−1.5 for LessEfficient and It := 3.5t−2.5 for

MoreEfficient.2 The curves of It, as a function of the distance t, are shown in Figure 14

(left). In both cases, It converges to zero as t grows to infinity. However, It decays more

quickly for language MoreEfficient. This means that predictive information about an

observation is concentrated more strongly in the recent past. In Figure 14 (right), we show

t · It as a function of t. Note that the area under the curve is equal to (4). This area is

smaller for the MoreEfficient language, as It decays more quickly there. In Figure 3, we

show the resulting bounds on memory–surprisal tradeoffs of the two languages. As It

decays faster for language MoreEfficient, it has a more efficient memory–surprisal tradeoff,

allowing a listener to achieve strictly lower surprisal across a range of memory values.

Other kinds of memory bottlenecks

We derived the memory–surprisal tradeoff and the Information Locality Lower

Bound by imposing a capacity limit on memory using the entropy HM . The entropy HM

represents the average amount of information that can be stored in memory at any time.

However, in some psycholinguistic theories, memory-related difficulty arises not because of

a bound on memory capacity, but rather because of difficulties involved in retrieving

information from memory (Lewis & Vasishth, 2005; McElree, 2000; Nicenboim & Vasishth,

2018; Vasishth, Nicenboim, Engelmann, & Burchert, 2019).

It turns out that it is possible to derive results closely analogous to ours by

imposing a capacity limit on the retrieval of information from memory, rather than the

storage of information. Essentially, the constraint on the memory state in our Theorem 1

can be re-interpreted as a constraint on the capacity of a communication channel linking

2 Although these are purely mathematical examples, the It curve for natural languages does seem

empirically to fall off as a power law as in these examples (Dębowski, 2015).
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short-term memory to working memory. This result constrains average surprisal for

memory models based on cue-based retrieval such as the ACT-R model of Lewis and

Vasishth (2005). In fact, the theorem based on retrieval capacity gives a tighter bound

than the theorem based on storage capacity. For the full model and derivation, see SI

Section 1.3.

We believe that concepts analogous to the memory–surprisal tradeoff and the

Information Locality Lower Bound are likely to be valid across a broad range of models of

incremental processing and memory.

Study 1: Memory and Dependency Length

So far, we have proven that there exists a tradeoff between memory invested and

surprisal incurred during language processing, and that this tradeoff is optimized when

languages have relatively short-term dependencies. In this section we qualitatively test the

Efficient Tradeoff Hypothesis by reanalyzing the data from Fedzechkina et al., 2017. This

is a miniature artificial language study that showed a bias for dependency locality in

production in artificial language learning. We will show that, as predicted, the languages

which were favored in the artificial language learning experiment are those which optimize

the memory–surprisal tradeoff.

Background: Fedzechkina et al. (2017)

Fedzechkina et al. (2017) conducted a miniature artificial language learning

experiment in which participants were exposed to videos describing simple events, paired

with sentences in an artificial language of the form Subject–Object–Verb or

Object–Subject–Verb, in equal proportion, with free variation between these two word

orders. The subject and the object were either simple nouns, or complex noun phrases with

modifiers. Participants were trained to produce sentences in response to videos.

Crucially, Fedzechkina et al. (2017) set up the experiment such that in all training

trials, either the subject and the object were both simple, or they were both complex.
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Then, after participants were sufficiently skilled in the use of the artificial language, they

were asked to produce sentences describing videos with mixed complexity of noun phrases.

The possible word orders that could be produced in this mixed-complexity setting are

shown in Figure 4; the orders marked A would create short dependencies, and the orders

marked B would create long dependencies.

A Orders: Short Dependencies

OSV: [[Adjective Noun Postposition] Noun-Case] Noun Verb

SOV: [[Adjective Noun Postposition] Noun] Noun-Case Verb

B Orders: Long Dependencies

SOV: Noun [[Adjective Noun Postposition] Noun-Case] Verb

OSV: Noun-Case [[Adjective Noun Postposition] Noun] Verb
Figure 4

Production targets in the miniature artificial language from Fedzechkina, Chu, and Jaeger,

2017. The language has head-final order, with free variation between SO and OS orders.

When one of the arguments is much longer than the other, placing the longer one first (A

orders) shortens syntactic dependencies, compared to B orders.

Fedzechkina et al. (2017) found that participants favored the A orders over the B

orders, despite the fact that there was no pattern in the participants’ training input which

would have favored A over B. That is, when exposed to input which was ambiguous with

respect to language A or B, participants favored language A. Fedzechkina et al. (2017)

explained this result in terms of dependency locality: because the A orders create short

dependencies between the verb and its arguments and the B orders create long

dependencies, participants preferred the A orders.

Calculating the memory–surprisal tradeoff for the artificial languages

The Efficient Tradeoff Hypothesis predicts that the favored language A has a steeper

memory–surprisal tradeoff curve than the disfavored language B. Because of the controlled
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nature of this artificial language, we are able to test this hypothesis by exactly computing

the bound on memory as given in Theorem 1. In fact, for this toy process, we can prove

that the bound provided by the theorem is achievable, meaning that our computations

reflect the true memory–surprisal tradeoff curve, and not only a lower bound on it.

We only consider the head-final version of Fedzechkina et al. (2017)’s artificial

language. This is because our bound on the memory–surprisal tradeoff curve is invariant

under reversal of a language. That is, if we take a language and reverse the order of all the

words in all its sentences, we would measure the same lower bound on the

memory–surprisal tradeoff curve (for a proof, see SI Section 1.5). Therefore, strictly

head-final and strictly head-initial languages are equivalent under our bound.

We constructed a stochastic process representing the language consisting of

sentences with the A orders from Figure 4, and one language consisting of the B orders.

Following the experimental setup of Fedzechkina et al., 2017, we assigned equal probability

to the two possible configurations per language, and used a separate set of nouns

(inanimate nouns) for the embedded noun in the long phrase.

We interpreted each of the two languages as a stationary processes, extending

infinitely in both directions, by concatenating independent samples drawn from the

language, and separating them with a special symbol indicating sentence boundaries. We

computed the bounds on memory and surprisal (4-5) from Theorem 1 from a chain of 1000

independently sampled sentences, for each of the two versions of the toy language.

Results

Figure 15 (left) shows the curve of the conditional mutual information It as a

function of the distance t, for the two languages A and B. The curves differ at t = 2 and

t = 5: About 0.105 bits of predictive information that are at distance t = 2 in the A orders

are moved to t = 5 in the B orders.
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The source of the difference lies in predicting the presence and absence of a case

marker on the second argument. Conceptually, a comprehender may be in a state of

uncertainty as to whether a subject or object might follow. Since surprisal is determined

entirely by the statistical properties of distributions over wordforms, this uncertainty

manifests as uncertainty about whether to expect an accusative case marker. 3 In the A

orders, considering the last two words is sufficient to make this decision. In the B orders, it

is necessary to consider the word before the long second constituent, which is five words in

the past.

The total amount of predictive information—corresponding to the area under the It

curve—is the same for both languages, indicating that both languages are equally

predictable. However, the memory demands differ between the two languages. Figure 15

(right) shows the minimal memory requirements for remembering predictive information at

a distance t (t · It) as a function of t. As It decays faster in A orders, the total area under

the curve differs between A and B, and is larger in B. Thus, achieving the same predictive

accuracy in language B requires more memory resources than in language A.

Figure 5 shows the resulting memory–surprisal tradeoff curve for the two versions of

the artificial language from Fedzechkina et al., 2017, obtained by tracing out all values of

T = 1, 2, . . . in the theorem, and connecting the points linearly.4 The curve shows that, at

any desired level of surprisal, language A requires at most as much memory as language B.

To reach optimal surprisal, the empirically-favored language A requires strictly less

memory.

3 In other languages lacking case markers, similar uncertainty may manifest as uncertainty about

wordform, since subjects and objects often have very different distributions over wordforms.

4 Linear interpolation is justified because rate-distortion curves such as the memory–surprisal tradeoff

curve are convex (Berger, 2003).
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Tradeoff between listener memory and surprisal for the two versions of the artificial

language from Fedzechkina, Chu, and Jaeger, 2017. Language A requires less memory at

the same level of surprisal.

Discussion

In a reinterpretation of previous experimental findings, we showed that the

languages which are favored in an artificial language learning experiment are those which

optimize the memory–surprisal tradeoff. This is evidence that learners and/or speakers

have a bias toward word orders that optimize the tradeoff. Furthermore, this result

solidifies the link between the memory–surprisal tradeoff and more traditional notions from

linguistics, such as dependency locality. We found that the word orders which are optimal

from the perspective of dependency locality are also those orders which are optimal from

the perspective of the memory–surprisal tradeoff, in the setting of a small controlled

artificial language. In Study 2, we scale this approach up to larger corpora of real text.
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Study 2: Large-Scale Evidence that Word Orders Optimize Memory-Surprisal

Tradeoff

To test whether word orders as found in natural language reflect optimization for the

memory–surprisal tradeoff more generally, we compare the memory–surprisal tradeoffs of

54 actual languages to those of counterfactual baseline languages. These baseline languages

differ from the actual languages only in their word order rules. This method of comparison

against counterfactual baseline languages was introduced by Gildea and Temperley (2007,

2010) and has since been fruitfully applied to study optimization-based models of word

order universals (Futrell et al., 2015a; Gildea & Jaeger, 2015; Hahn et al., 2020).

Here, we describe how we measure the memory–surprisal tradeoff in corpora, and

how we generate counterfactual baseline languages. We then compare the tradeoff in real

corpora against the tradeoff in the counterfactual baselines. For the majority of languages,

we find that the real languages have more favorable memory–surprisal tradeoffs than the

baselines, in line with the Efficient Tradeoff Hypothesis.

Measuring the memory–surprisal tradeoff in corpora

The key to evaluating the memory–surprisal tradeoff from corpus data is the set of

quantities It, the mutual information between words at distance t conditional on the

intervening words. These quantities can be plugged in to Theorem 1 to give a lower bound

on the memory–surprisal tradeoff.

The quantities It can be estimated as the difference between the average surprisal of

Markov models have access to windows of size t and t+ 1. That is, if we have a t’th-order

Markov model with average surprisal

St = H[wt|w1, . . . , wt−1] (6)

and a (t+ 1)’th-order Markov model with average surprisal

St+1 = H[wt|w0, . . . , wt−1],
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then we can calculate It straightforwardly in the following way:

It = I[wt : w0|w1, . . . , wt−1]

= St − St+1.

Therefore, to evaluate It, all we need is a way of fitting Markov models of order t and t+ 1

and computing their average surprisals.

To fit Markov models to the data, we use neural language models. In particular, we

use Recurrent Neural Networks with Long Short-Term Memory architectures (Hochreiter &

Schmidhuber, 1997). Neural network models are the basis of the state-of-the art in

statistical modeling of language. Surprisal estimates derived from such models have been

shown to best predict reading times, compared to other models, e.g., n-gram

models (Frank & Bod, 2011; Goodkind & Bicknell, 2018). See SI Section 3.2 for details on

how these models were fit to data, and see SI Sections 3.4 and 3.5 for control studies using

other methods of estimating It (based on n-gram models and PCFG chart parsers). These

control studies yield the same qualitative results as the neural network-based studies

presented here.

For each language, we run the neural network estimator multiple times with

different random seeds, to control for variation in the random initialization of model

parameters (see SI Section 3.2.3 for details).

In order to evaluate the average surprisal values St, we computed the empirical

word-by-word surprisal values under the t’th-order Markov model for held-out data,

different from the data that was used to train the model. By evaluating on held-out data,

we avoid underestimating the value of St due to overfitting. We chose held-out data based

on existing splits of corpora, see section ‘Data’ below.

Data

We draw on syntactically annotated corpora, compiled by the Universal

Dependencies project for several dozen languages (Nivre, Agić, et al., 2017). These are
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annotated in the format of Dependency Grammar (Corbett, Fraser, & McGlashan, 1993;

Hays, 1964; Hudson, 1984; Melčuk, 1988; Tesnière & Kahane, 2015). In such dependency

corpora, sentences are annotated with dependency trees (Figure 6). These are directed

trees describing the grammatical relations among words. For example, the arcs labeled

“obj” represent that the noun in question is the direct object of the verb, rather than e.g.

the subject or an indirect object. A dependency arc is drawn from a head (e.g. the verb

‘has’) to a dependent (e.g. its object ‘book’). Dependency trees can be defined in terms of

many different syntactic theories (Corbett et al., 1993). Although there are some differences

in how different formalisms would draw trees for certain sentences, there is broad enough

agreement about dependency trees that it has been possible to develop large-scale

dependency-annotated corpora of text from dozens of languages (Nivre, Agić, et al., 2017).

Mary has two green books

nsubj

obj

nummod

amod

Figure 6

An English sentence with dependency annotations, according to the Universal Dependencies

2.4 standard (Nivre, Agić, et al., 2017). We visualize grammatical relations as arcs drawn

from heads (e.g., the verb ‘has’) to dependents (e.g., its object ‘book’).

We computed memory–surprisal tradeoffs for all languages for which there are

Universal Dependencies 2.4 treebanks with a total of at least 500 sentences of training

data. We excluded data from historical languages, as these corpora often include poetry,

translated text, or texts spanning several centuries.5 This resulted in 54 languages. We

also excluded corpora that primarily contain code-switched text6 or text created by

5 Historical languages excluded: Ancient Greek, Classical Chinese, Coptic, Gothic, Latin, Old Church

Slavonic, Old French.

6 Hindi English corpus
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non-native speakers.7

For each of these languages, we pooled all available corpora into one dataset. Most

Universal Dependencies corpora have a predefined split into training, held-out (also known

as development), and test partitions. In most cases, we used the predefined data split,

separately pooling data from the different partitions. For some languages with little data,

there is no predefined training partition, or the training partition is smaller than the other

partitions. In these cases, we redefined the split to obtain more training data. For these

languages, we pooled all the available partitions, used 100 randomly selected sentences as

held-out data, and used the remainder as training data.8 We did not make use of the test

partitions here. We provide the sizes of the resulting datasets in SI Section 3.1. The

datasets ranged in size from 564 sentences (Armenian) to 114,304 sentences (Czech), with a

median of 5,255 sentences per language. For each language, we obtain a stationary process

by concatenating the sentences from the corpus in random order, separated with an

end-of-sentence symbol.

Defining baselines

Testing the Efficient Tradeoff Hypothesis requires comparing the memory–surprisal

tradeoffs of real grammars to those of baseline grammars. The baseline grammars we

construct are counterfactual ordering grammars that define consistent ordering rules

similar to those found in actual languages (Figure 7). For instance, these grammars specify

which dependents precede or follow their heads (e.g., whether objects follow or precede

verbs, whether adjectives follow or precede nouns), and the relative order of different

dependents on the same side of the head (e.g., whether noun phrases have order

adjective-numeral-noun or numeral-adjective-noun). Our formalism of ordering grammars

7 ESL for English, CFL for Chinese.

8 This affects Amharic, Armenian, Breton, Buryat, Cantonese, Faroese, Kazakh, Kurmanji, Naija, Thai,

and Uyghur.
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was introduced in Hahn et al. (2020), adapting the method of Gildea and Temperley (2007,

2010) to the setting of dependency corpora.

Mary has two green books

nsubj obj

nummod

amod

Mary

has

two

greenbooks

Hierarchical Structures

Maryhastwogreenbooks

Counterfactual Corpus

Annotated Corpus Grammar 1
adjectival modifiers 0.3

numerals

subjects

objects

0.7

0.2

-0.8

Maryhas twogreenbooks

Counterfactual Corpus

Grammar 2

Maryhas twogreen books

Counterfactual Corpus

Grammar 3
adjectival modifiers 0.3

numerals

subjects

objects

0.7

 0.2

0.1

adjectival modifiers -0.3

numerals

subjects

objects

0.7

 0.2

0.8

Figure 7

Estimating chance by constructing counterfactual grammars and languages: We start from

an annotated dependency corpus of sentences annotated with syntactic dependencies (top

left). We then extract the raw dependency structures, stripping away word order

information (bottom left). We construct baseline ordering grammars that provide rules for

ordering the words in such dependency structures (Grammars 1–3). Applying any such

grammar to the dependency structures yields a counterfactual corpus of a hypothetical

language that has the same dependency structures as the actual language, but different word

order rules.

Universal Dependencies 2.4 defines 37 universal syntactic relations that are used to

label dependency arcs across all corpora. These relations encode cross-linguistically

meaningful relations such as subjects (nsubj, see Figure 6) , objects (obj), and adjectival

modifiers (amod). We define ordering grammars by assigning a parameter aτ ∈ [−1, 1] to

every one of these 37 universal syntactic relations. Relations sometimes have

language-specific subtypes; we do not distinguish these subtypes. Following Gildea and

colleagues, this parameter defines how dependents are ordered relative to their head: Given

a head and a set of dependents, we order each dependent by the parameter aτ assigned to
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the syntactic relation linking it to the head. Dependents with negative weights are placed

to the left of the head; dependents with positive weights are placed to the right. Ordering

grammars describe languages that have consistent word order. For instance, the subject is

consistently ordered before or after the verb, depending on whether the parameter ansubj

for the verb-subject dependency is positive or negative.

We constructed baseline grammars by randomly sampling the parameters aτ . Such

baseline grammars define languages that have word order rules which are consistent but do

not exhibit systematic preferences for patterns such as short dependencies.

We first constructed at least 10 baseline grammars for each of the 54 real languages.

We then continued to construct baseline grammars until a precision-based stopping

criterion was reached. This criterion was designed to ensure that enough grammars were

sampled to reliably compare the tradeoff curves of real and baseline grammars, without

biasing results towards or against our hypothesis (see SI Section 3.2.3). The stopping

criterion compared what fraction of baseline grammars had strictly more (or strictly less)

efficient tradeoff curves than the real ordering, and required a bootstrapped 95% confidence

interval for that ratio to have width ≤ 0.15. The resulting number of baseline grammars

ranged from 10 (Italian and Romanian) to 347 (Estonian).9

Due to the way ordering grammars are specified, certain kinds of rules cannot be

modeled by our word order grammars. This includes rules sensitive to the category of the

dependent, such as the difference between postverbal nominal objects and preverbal

pronominal objects in Romance languages. It also includes rules sensitive to larger context,

e.g., the alternation between verb-final order in embedded clauses and

verb-initial/verb-medial order in main clauses in German and Dutch. Furthermore, the

model does not allow rules specifying interactions between different constituents, for

instance, verb-second order, where exactly one dependent precedes the verb, and all others

9 Due to a scripting error, 846 grammars were generated for Erzya even though this was not required by

the stopping criterion.
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follow it. Finally, the model does not account for word order freedom, as all ordering

choices are deterministic. In this sense, ordering grammars only represent an approximation

to the kinds of ordering rules found in natural language. Other models described in the

literature (Futrell & Gibson, 2015; Wang & Eisner, 2016) mostly share these limitations.

To ensure that results are not due to the representational restrictions of the word

order grammar formalism, we also compared the baselines to the result of ordering the

corpora according to grammars that approximate the real orders to the extent possible in

the grammar formalism. These grammars have exactly the same representational

constraints as the baseline grammars while approximating the real orderings. We expect

these grammars to have better memory–surprisal tradeoffs than comparable random

baseline grammars across all languages. We created these ordering grammars by fitting

them to the actual orderings of each language using the method of Hahn et al., 2020. They

match the order of the actual language in those cases where order of a relation is fully

consistent; for relations where order is variable, they approximate this by modeling the

most frequent order. In representing word order rules, they have the same limitations as

baseline grammars have, for instance, they cannot specify rules sensitive to the category of

the dependent or to larger context.

Results

To test the Efficient Tradeoff Hypothesis, we compare the tradeoff curves for the

real orders with those for random baseline grammars. In Figure 8, we show the estimated

values of It for real and fitted orders and the median of It across different baseline

grammars. In most languages, I1 is distinctly larger for the actual and fitted orderings

compared to the baseline orderings. This means that real orderings tend to concentrate

more predictive information at the immediately preceding word than baseline grammars.

In Figure 9, we show the resulting bounds on the memory–surprisal tradeoff curves,

showing surprisals at given levels of memory, for real and baseline languages. We compute
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surprisal at 40 evenly spaced points of memory (selected individually for each language,

between 0 and the maximal memory capacity HM obtained using Theorem 1), over real

orders and baseline grammars. At each point, we then compute the median surprisal over

all model runs for the real language, and over all baselines grammars. For each point, we

compute an non-asymptotic and non-parametric 95% confidence interval for this median

surprisal using the binomial test.

Numerically, the real language provides a better tradeoff than the median of the

baselines across all languages, with four exceptions (Latvian, North Sami, Polish, Slovak).

In order to quantify the degree of optimality of real orders, we further computed the area

under the memory–surprisal tradeoff curve (AUC) for real and baseline orderings. Area

under the curve (AUC) is a general quantity evaluating the efficiency of a tradeoff curve

(Bradley, 1997). A smaller area indicates a more efficient memory–surprisal tradeoff. In

Figure 10, we plot the AUC for the real orderings, together with the distribution of AUCs

for baseline grammars. We quantify the degree of optimality by the fraction of baseline

grammars for which the AUC is higher than for the real orders: The real ordering is highly

efficient if it results in a lower AUC than almost all baseline grammars. Numerically, the

AUC is smaller in the real orderings than in at least 50% of baseline grammars in all but

three languages (Polish, Slovak, North Sami). We evaluated significance using a two-sided

binomial test. In these three languages, the AUC is higher in the real orderings than in

significantly less than 50% (p < 0.01 in each language). In all other languages except for

Latvian, the fraction of more efficient baseline grammars was significantly less than 50%, at

p = 0.01, where we applied Hochberg’s step-up procedure (Hochberg, 1988) to control for

multiple comparisons. In 42 of the 54 languages, the real language was more efficient than

all of the sampled baseline grammars.

The AUC for the fitted grammars is lower than more than 50% of random baseline

grammars in all 54 languages (p < 0.01, using two-sided Binomial test and Hochberg’s

step-up procedure). Thus, we replicate the result that ordering regularities of real
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languages provide more efficient tradeoffs than most possible order grammars even when

comparing within the same word order grammar formalism.
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Figure 8

Conditional mutual information It (y-axis) as a function of t (x-axis), for real, fitted and

baseline orders. We plot the median over all sampled baseline grammars.
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Discussion

We have found that 50 out of 54 languages provide better memory–surprisal

tradeoffs than random baselines with consistent but counterfactual word order rules.

Numerically, we observed differences in memory and surprisal between real and baseline

orders in the range of up to a few bits, often less than a bit (Figure 9). While one bit of

memory seems like a small difference, this is a difference in cost at every word, which

accumulates over a sentence. In a sentence with 20 words, the overall number of bits that

have to be encoded over time (though not simultaneously) additionally might add up to 20

bits.

Four languages provide exceptions; these are Latvian (Baltic), North Sami (Uralic),

Polish and Slovak (both Slavic). These four languages did not have significantly lower AUC

values than half of the random baselines. One feature that unites these four languages is

that they have strong word order freedom, as we will see below in Figure 11. Word order

freedom plausibly makes sentences less predictable, as the same syntactic structure can

receive different surface realizations. We thus hypothesized that word order freedom

impacts the memory–surprisal tradeoff, and that languages with more strongly fixed word

order should display more optimal memory–surprisal tradeoffs.

To test this hypothesis, we examined the correlation between word order freedom

and the surprisal difference between real and baseline orderings. To quantify word order

freedom, we used a corpus-based estimate, the branching direction entropy (Futrell,

Mahowald, & Gibson, 2015b). This is the entropy of the ordering (head-first or

dependent-first) of dependencies conditioned on the dependency label and the

part-of-speech label of head and dependent. These two quantities are plotted in Figure 11.

We found that branching direction entropy was strongly correlated with the surprisal

difference between real and baseline orderings (Spearman correlation −0.58, p < .0001).

This result might mean that optimization of word orders for memory–surprisal

tradeoffs is indeed stronger in languages with more fixed word order, and that word order
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freedom leads to less efficient memory–surprisal tradeoffs. A second possibility is that

languages with seemingly free word order encode other information in word order, in

particular, information about information structure (e.g. Firbas, 1966, 1974; Givon, 1988;

Myhill, 1985). Next, we test the latter hypothesis by examining whether the degree of

optimization changes when taking into account information structure.

Controlling for Information Structure

In this section we address the question about word order freedom raised in the last

section. We draw on a corpus of Czech with information structure annotation to determine

whether real orders are more optimized when comparing to baselines taking information

structure into account.

Languages with flexible word order often show a strong influence of information

structure on word order (Givon, 1988; Jacobs, 1988; Neeleman & van de Koot, 2016). Due

to the difficulty of annotating information structure, only relatively few datasets have

annotations for information structure, and even fewer datasets have both syntactic and

information structure annotation. We draw on the Prague Dependency Treebank of Czech

(Böhmová, Hajič, Hajičová, & Hladká, 2003; Mikulová et al., 2006), which has both types

of annotation. Czech is a language with relatively high degree of word order freedom, which

is generally thought to be strongly impacted by information structure (Firbas, 1966, 1974).

About one third of the Prague Dependency Treebank has annotation for topic-focus

articulation (Mikulová et al., 2006). Constituents are annotated for contrastiveness and for

contextual boundedness, i.e., givenness. Contextually bound expressions are presumed as

given in context so that their referent is uniquely determined by the context; contextually

bound expressions are contrastive if they choose from a contextually given set of

alternatives (Mikulová et al., 2006, Section 10.2). Three labels are used: “c” for contrastive

and contextually bound, “f” for contextually non-bound, “t” for non-contrastive

contextually bound. These labels were diagnosed based on constituent order and
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intonation. Some constituents remain unmarked, the vast majority of which are function

words such as adpositions, conjunctions, and auxiliaries; we introduce a label “NA” for

these. To define baselines, we extend the word order grammar formalism by defining

separate weights for each combination of the 37 syntactic relations and these four

information structure labels.

We obtained 38,727 training sentences and 5,228 held-out sentences. We created 20

baseline grammars with information structure, 20 baseline grammars without it.

Results. We show estimated tradeoffs and the distributions over AUC values in

Figure 12. As this experiment was conducted only on the subset of the Prague Dependency

Treebank that has information structure annotation, the numerical values are slightly

different from those in Figure 9. We compare the real orders both with the same baselines

as above, and with the baselines taking information structure into account. Baselines show

a larger gap in efficiency between real and baseline grammars when the baselines condition

word order on information structure. This suggests that, among word orders that encode

information structure, the real order of Czech provides a very efficient memory–surprisal

tradeoff, and that the strength of optimization is underestimated when comparing against

baselines that do not take information structure into account.

In Figure 11, we show how the data point for Czech changes when including

information structure in the word order modeling. When modeling information structure,

branching direction entropy decreases, while the surprisal difference between real and

baseline orders increases. This suggests that the weaker optimization in free word order

languages observed in Study 2 might in part be because ordering grammars do not take

information structure into account. In general, we expect that conditioning word order on

more sources of information will increase the set of possible word orders, and thus decrease

predictability and increase surprisal. As more corpora become available, it will be

important to reproduce this finding on data from further languages. If this finding

replicates, then this would mean that the impact of order freedom on the strength of
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optimization observed in Study 2 is an artifact of the fact that languages differ in the

degree to which their word order encodes information structure, and that similar degrees of

optimization might actually hold across such different languages.

Discussion. Using data from Czech, we found that the difference between the

memory–surprisal tradeoffs of real and baseline orders increases if we choose baseline

orderings that encode information structure, as real orders do. We hypothesize that this in

part explains why the observed strength of memory efficiency optimization is negatively

correlated with the degree of word order freedom: Languages with flexible word order

typically encode information structure in word order, which increases average surprisal.

This does not mean that conditioning word order on information structure makes language

less efficient in general. Rather, encoding information structure in word order may increase

the information content transmitted to the listener, which may in turn balance an increase

in surprisal processing effort (Hahn et al., 2020). Due to the difficulty and cost of

annotating information structure, we could only evaluate this hypothesis on data from one

language. As more annotated data becomes available, this should be replicated on data

from further languages.

Interim summary

In this section, we tested the Efficient Tradeoff Hypothesis on dependency corpora

from 54 languages, comparing observed word orders to hypothetical baseline grammars.

We found that, in 50 out of 54 languages, real orders provide more efficient

memory–surprisal tradeoffs than most baseline grammars. This result also held when

comparing real and baseline orderings within a single grammar formalism. These results

suggests that, across languages, word order favors information locality more strongly than

most possible alternative orders.

We also found that the degree of optimization was weaker in languages with high

degrees of word order freedom. Using data from Czech that is annotated for both syntax
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and information structure, we provided evidence that this dependence on word order

freedom is an artifact of the fact that languages with flexible word order tend to encode

information structure in word order.

Taken together, Studies 1 and 2 suggest that crosslinguistic word orders are in part

impacted by a pressure towards efficient memory–surprisal tradeoffs, and thus information

locality. To test whether the Efficient Tradeoff Hypothesis holds at different levels of

representation, we consider morpheme order in Study 3.

Study 3: Morpheme Order

The Efficient Tradeoff Hypothesis should apply not just at the level of words, but at

the level of any linguistic element. For instance, just as observed word orders exhibit

information locality, the order of morphemes within words should also be structured so

that morphemes which predict each other are close to each other. Here, we apply the

Efficient Tradeoff Hypothesis to predict the order of morphemes within morphologically

complex words in two agglutinative languages. We study two agglutinative languages for

which extensive corpora with hand-annotated morphological segmentation and labeling are

available: Japanese and Sesotho. We compare the memory–surprisal tradeoff of the actual

morpheme orders in these languages with hypothetical baseline orderings. Furthermore, we

construct hypothetical orderings that are optimized for the efficiency of the

memory–surprisal tradeoff, and compare these to the actual morpheme orderings, to

investigate whether morpheme order in these languages can be predicted by optimization

of tradeoff efficiency. Below, we first give brief sketches of the morphological patterns in

these languages.

Verb Suffixes in Japanese. In Japanese, verbs are marked with an extensive

number of suffixes. For example, the following verb forms are marked with multiple suffixes:

(1) a. mi
see

rare
passive

mash
politeness

yoo
future

‘will be seen’
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b. mi
see

taku
desiderative

nakat
negation

ta
past

‘did not wish to see’

Based on corpus data and the linguistic literature on Japanese, we identified the following

frequent verb suffixes, occurring in the following order outwards from the verb root (see SI

for details).

1. suru: obligatory suffix after Sino-Japanese words when they are used as verbs

2. Valence: causative (-ase-) (Hasegawa (2014, p. 142), Kaiser, Ichikawa, Kobayashi,

and Yamamoto (2013, Chapter 13))

3. Voice and Mood: passive (-are-, -rare-) (Hasegawa (2014, p. 152), Kaiser et al. (2013,

Chapter 12)) and potential (-e-, -are-, -rare-) (Kaiser et al., 2013, p. 398)

4. Politeness (-mas-) (Kaiser et al., 2013, p. 190).

5. Mood: desiderative (-ta-) (Kaiser et al., 2013, p. 238)

6. Negation (-n-)

7. Tense, Aspect, Mood, and Finiteness: past (-ta), future/hortative (-yoo) (Kaiser

et al., 2013, p. 229), nonfiniteness (-te) (Kaiser et al., 2013, p. 186)

Verb Affixes in Sesotho. Sesotho (also known as Southern Sotho) is a Southern

Bantu language spoken primarily in Lesotho and South Africa. Sesotho verbs are marked

with both prefixes and suffixes (Demuth, 1992). Common prefixes include markers for

agreement with subjects and objects; object prefixes always follow subject prefixes (2-a).

Common suffixes include markers changing valence and voice, and a mood suffix (2-b).

(2) a. oa
subject.agreement

di
object.agreement

rek
buy

a
indicative

‘(he) is buying (it)’ (Demuth, 1992)
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b. o
subject.agreement

pheh
cook

el
applicative

a
indicative

‘(he) cooks (food) for (him)’ (Demuth, 1992)

We identified affix morphemes and their ordering based on the analysis in Demuth, 1992,

supplemented with information from grammars of Sesotho (Doke & Mofokeng, 1967;

Guma, 1971). See SI for details. We identified the following prefixes:

1. Subject agreement: This morpheme encodes agreement with the subject, for person,

number, and noun class (the latter only in the 3rd person) Doke and Mofokeng, 1967,

§395. The annotation provided by Demuth, 1992 distinguishes between ordinary

subject agreement prefixes and agreement prefixes used in relative clauses; we

distinguish these morpheme types here.

2. Negation (Doke & Mofokeng, 1967, §429)

3. Tense/aspect marker (Doke & Mofokeng, 1967, §400–424)

4. Object agreement or reflexive marker (Doke & Mofokeng, 1967, §459). Similar to

subject agreement, object agreement denotes person, number, and noun class features

of the object.

We identified the following suffixes:

1. Semantic derivation: reversive (e.g., ‘do’ → ‘undo’) (Doke & Mofokeng, 1967, §345)

2. Valence: Common valence-altering suffixes include causative, neuter/stative,

applicative, and reciprocal (Doke & Mofokeng, 1967, §307–338). See SI for details on

their meanings.

3. Voice: passive (Doke & Mofokeng, 1967, §300)

4. Tense (Doke & Mofokeng, 1967, §369)
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5. Mood (Doke & Mofokeng, 1967, §386–445)

6. Interrogative and relative markers, appended to verbs in certain interrogative and

relative clauses (Doke & Mofokeng, 1967, §160, 271, 320, 714, 793).

Experiment

Data Selection and Processing. For Japanese, we drew on Universal

Dependencies data. In the tokenization scheme used for Japanese, most affixes are

separated as individual tokens, effectively providing morpheme segmentations. We used the

GSD corpus, Version 2.4, (Asahara et al., 2018; Tanaka et al., 2016), as it was the only

corpus with a training set and freely available word forms. In the corpus, verb suffixes

largely correspond to auxiliaries (with tag AUX); only a few morphemes tagged AUX are not

standardly treated as suffixes (see SI), and one frequent suffix (-te) is labeled SCONJ. We

selected verb forms by selecting all chains of a verb (tag VERB) followed by any number of

auxiliaries (tag AUX) from the training set of the corpus. When the suffix -te (tag SCONJ)

followed such a chain, we added this. We labeled suffixes for underlying morphemes with

the help of the lemmatization provided for each suffix in the corpus (see SI Section 4.3 for

details). The passive and potential (slot 3) markers are formally indistinguishable for many

verbs. As we cannot systematically distinguish them on the basis of the available corpus

annotation, we merge these into a single underlying morpheme ‘Passive/Potential’.

We obtained 15,281 verb forms in the training set and 1,048 verb forms in the

held-out set. Of the forms in the training set, 27% had two or more suffixes (modal group:

two suffixes, accounting for 20% of forms; maximum seven suffixes). While predicting order

naturally focuses on datapoints with more than one suffix, we include the other datapoints

for estimating conditional mutual information It.

For Sesotho, we used the Demuth Corpus (Demuth, 1992) of child and

child-directed speech, containing about 13K utterances with 500K morphemes. The corpus

has very extensive manual morphological segmentation and annotation; each verb form is
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segmented into morphemes, which are annotated for their function. Sesotho verbs carry

both prefixes and suffixes. We extracted 37K verb forms (see SI 4.2 for details). We

randomly selected 5% to serve as held-out data and used the remaining 95% as training

data. 93% of forms had two or more affixes (modal group: three affixes, accounting for 36%

of forms; maximum eight affixes).

Estimating Memory-Surprisal Tradeoff. We modeled incremental prediction

on the level of morpheme sequences. To do so, we represented each verb form as a sequence

of a stem and affix morphemes, abstracting away from morphophonemic interactions

between neighboring morphemes. As in many languages, affixes in Japanese and Sesotho

show morphophonemic interactions between neighboring morphemes; for instance, the

Japanese politeness morpheme -mas- takes the form -masu when it is word-final, while it

has the allomorph -mase- when followed by the negation suffix -n. Modeling prediction on

the level of morphemes, as opposed to phonemes, controls for these interactions.10

In analogy to Studies 1–2, we modeled verb forms as a stationary stochastic process

by concatenating the verb forms from the corpus in random order.

We calculated It by estimating an n-gram model on the training set and then

computing the average surprisal St as cross-entropy on the held-out set using Kneser-Ney

smoothing. The model may overfit as the context size t increases, leading to higher

cross-entropies for larger values of t. We mitigated overfitting for large t by estimating

Ŝt := min
s≤t

Ss, (7)

where Ss is the cross-entropy of the s’th order Markov model on held-out data. This

procedure ensures that Ŝt can only decrease as the context size t increases.

Parameterizing Alternative Orderings. We parameterized alternative affix

orderings by assigning a weight in [0, 1] to each morpheme. Given such a grammar, affixes

are ordered by the values assigned to their underlying morphemes. We considered all

10 See SI Section 4.3 for qualitatively similar results when modeling prediction at the phoneme level.
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morphemes annotated in the corpora, including low-frequency ones going beyond the ones

identified above (see SI for details).

To verify that this formalism is appropriate for capturing morpheme order in

Japanese and Sesotho, we fitted models parameterized in this way to the observed orders.

Ordering morphemes according to these fitted models recovered the observed order for

almost all forms (98.6 % for Japanese, 99.93% for Sesotho prefixes, 97.4% for Sesotho

suffixes). Exceptions largely concern low-frequency affixes beyond those considered here.

We take this as confirmation that the formalism is generally suited to capture morpheme

order.

For each language, we constructed 40 baseline grammars by randomly sampling

weights.

Creating Optimal Orders. In order to create optimal orders to compare real

orders to, we optimized orderings for the AUC under the memory–surprisal tradeoff curve

with an adaptation of the hill climbing method that Gildea and Jaeger (2015) used to

optimize word order grammars for the length of syntactic dependencies and trigram

surprisal.

We randomly initialized the assignment of weights to morphemes, and then

iteratively change the assignment to reduce AUC. In each iteration, we randomly chose one

morpheme, and evaluate AUC for each way of ordering it between two other morphemes.

We then updated the weights to the ordering that yields the lowest AUC. To speed up

optimization, we restricted to morphemes occurring at least 10 times in the corpus for 95%

of iterations, and to 10% of possible orderings in each step. These choices vastly reduced

computation time by reducing time spent on low-frequency morphemes. This optimization

method is approximate, as it only guarantees convergence to a local optimum (Gildea &

Jaeger, 2015), not to a globally optimal assignment.

We ran this method for 1,000 iterations. Empirically, AUC converged after a few

hundred iterations. To control for the randomness in initialization and the optimization
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steps, we ran this algorithm ten times. Different runs achieved almost the same AUC

values (SD 0.0051 in Japanese, 0.0036 in Sesotho). For Sesotho, we ran the algorithm

separately for prefixes and suffixes due to computational efficiency considerations.11

Results

In Figure 13, we compare the area under curve of the memory–surprisal tradeoff for

Japanese and Sesotho verb forms under different orderings. Both observed orders and the

approximately optimized grammars show lower AUCs than all 40 random baseline samples,

in both languages. For comparison, we also show AUC for the order resulting from

reversing all suffix chains in the observed orders; this results in high AUC even exceeding

most random grammars. These results show that Japanese and Sesotho affix orderings

enable approximately optimal memory–surprisal tradeoffs.

We now ask to what extent the observed morpheme ordering is predicted correctly

by approximately optimized grammars. In Table 1, we give summary statistics about the

accuracy of optimized grammars in predicting affix order in the corpus, together with

random baseline figures. We evaluate accuracy using two methods: In one method

(‘Pairs’), we consider, for each verb form in the corpus, all pairs of prefixes (or suffixes).

We report the proportion of these pairs in the corpus for which the relative order of the

two affixes is as predicted by the grammar. In the other method, (‘Full’), we report the

proportion of verb forms in the corpus that has exactly the affix ordering predicted by the

grammar. In both measures, we average over all ten approximately optimized grammars

for each language.

Japanese results. In Japanese, by both measures, optimized grammars recover

the observed orders with high accuracy. We compare the real grammar with the

approximately optimized grammar that achieved the lowest AUC value in Table 2. We

11 With the exception of the tense/aspect markers, none of the morpheme types discussed above can occur

both as prefixes and suffixes. Therefore, we do not expect this separation to impact results.
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Prefixes Suffixes

Pairs Full Pairs Full

Japanese Optimized – – 0.953 (SD 0.011) 0.943 (SD 0.014)

Baseline – – 0.497 (SD 0.287) 0.425 (SD 0.29)

Sesotho Optimized 0.988 (SD 0.0) 0.989 (SD 0.0) 0.756 (SD 0.014) 0.676 (SD 0.017)

Baseline 0.672 (SD 0.305) 0.604 (SD 0.338) 0.423 (SD 0.204) 0.332 (SD 0.211)
Table 1

Accuracy of approximately optimized orderings, and of random baseline orderings, in

predicting verb affix order in Japanese and Sesotho. ‘Pairs’ denotes the rate of pairs of

morphemes that are ordered correctly, and ‘Full’ denotes the rate of verb forms where order

is predicted entirely correctly. We show means and standard deviations over ten different

runs of the optimization algorithm (‘Optimized’), and over different random orderings

(‘Random’).

conducted an error analysis comparing the real Japanese morpheme order against our

approximately optimized orders. We extracted the pairs of morphemes whose relative order

is incorrectly predicted, excluding pairs involving low-frequency morphemes not discussed

here. Results are shown in Table 3. The most frequent divergence for this grammar is that

politeness and negation suffixes are consistently ordered incorrectly; this affects 74 corpus

examples (out of 15K total examples).

We also found that prediction was more accurate when modeling on the level of

phonemes, suggesting that divergence between model predictions and actual order might

be related to phonological pressure (see SI Section 4.3).

Sesotho results. We compare the real Sesotho grammar with the approximately

optimized grammar that achieved the lowest AUC value in Table 4. In Sesotho, for

prefixes, all optimized grammars almost exactly recover the ordering described above. The

only divergence among the high-frequency morphemes is that negation and the
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Real Optimized

Stem Stem

1 suru suru

2 causative causative

3 passive/potential passive/potential

4 desiderative negation

5 politeness future

6 negation politeness

7 future desiderative

past nonfinite

nonfinite past
Table 2

Comparing order of Japanese affixes in the observed orders (left) and according to an

approximately optimized grammar (right). We organize the affixes in the real order into the

seven slots described above.

tense/aspect prefix are ordered incorrectly; this accounts for only 12 occurrences in the

data set, as the two prefixes rarely co-occur (Table 5, top).

For Sesotho suffixes, order is recovered at above-chance accuracies (Table 1,

bottom), though with some divergences. The most common error (Table 5, bottom) is that

relative and interrogative suffixes are consistently placed closer to the verb stem than the

mood suffix. We conjecture that this happens because all Sesotho verbs uniformly have a

mood suffix, suggesting that there might be lower mutual information between the stem

and the mood suffix than between the stem and these two suffixes. Furthermore,

valence-changing suffixes are ordered farther away from the stem than various other

suffixes, in contrast with the actual orders. Interestingly, we found that prediction was

more accurate in this respect when estimating It naively on the training set (see SI Section
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Error Frequency

politeness negation 74

desiderative negation 14

politeness future 9
Table 3

Errors in Japanese: We show pairs of morphemes that are ordered incorrectly by the

approximately optimized grammar with the lowest AUC value. We indicate the number of

such pairs occurring in the corpus. We only show errors where both morphemes are among

the high-frequency ones studied here.

4.3), suggesting that the available corpus data does not sufficiently determine the optimal

ordering.

Discussion

We have found that the ordering of verb affixes in Japanese and Sesotho provides

approximately optimal memory–surprisal tradeoffs, close to the efficiency of orderings

computationally optimized for efficiency. We further found that parts of these languages’

ordering rules can be derived from optimizing order for efficient tradeoffs.

Here we argue that the memory–surprisal tradeoff provides an explanation of

previously-existing typological generalizations, and an operationalization of previous

functionally-motivated explanations for them; in particular, we argue that the notion of

mutual information operationalizes the concept of ‘relevance.’

One prominent typological generalization due to Bybee (1985, p. 24, 34–35) claims

that there exists a universal ordering of verbal inflectional morphemes across languages:

verb stem valence voice aspect tense mood subject agreement

Morphemes are claimed either to go in the order above (suffixes), or its reverse (prefixes).

This hierarchy makes no statements as to which affixes are realized as prefixes or suffixes.
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Japanese and Sesotho verb affixes are broadly in agreement with Bybee’s

generalization. For instance, valence and voice suffixes are closer to the stem than

tense/aspect/mood markers. Subject agreement in Sesotho is farther away from the verb

than tense/aspect/mood prefixes. This ordering is reproduced closely by optimization in

Japanese and for Sesotho prefixes, and to some extent also for Sesotho suffixes.

Bybee (1985, p. 37) argues further that morpheme order is determined by the degree

of relevance between the affix and the stem, that is, the degree to which “the semantic

content of the first [element] directly affects or modifies the semantic content of the

second” (p. 13). She argues that elements whose meanings are more relevant to each other

appear closer together. For instance, the meaning of a verb is impacted more strongly by a

causative affix than by a tense affix: Combining a verb with a causative marker results in a

form that denotes a different action, whereas a tense affix only locates the action in time.

We conjecture that this notion of relevance is related to mutual information. If an

affix has a stronger impact on the meaning of the verb, it will typically not be applicable to

all verbs. For instance, causative markers will only attach to verbs whose semantics is

compatible with causation. In contrast, a past tense marker can attach to all verbs that are

compatible with actions that can have occurred in the past. Therefore, we expect that

affixes that are more relevant to a verb stem will also tend to have higher mutual

information with the verb stem. If they have higher mutual information with the verb stem,

then the principle of information locality predicts that they will go close to the verb stem.

General Discussion

We introduced a notion of memory efficiency in language processing: the

memory–surprisal tradeoff. We then tested the resulting Efficient Tradeoff Hypothesis:

Order of elements in natural language is characterized by efficient memory–surprisal

tradeoffs, compared to other possible orders. In Study 1, we showed that the Efficient

Tradeoff Hypothesis predicts the known preference for short dependencies. In Study 2, we
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used corpus data from 54 languages to show that real word orders provide more efficient

tradeoffs than baseline order grammars. In Study 3, we showed that in two languages

(Japanese and Sesotho) the order of verb affixes not only provides approximately optimal

tradeoffs, but can also partly be predicted by optimizing for the efficiency of the

memory–surprisal tradeoff.

Here, we discuss the limitations of our results and the implications they have more

broadly for the fields of psycholinguistics, typology, and information theory.

Role of Comprehension, Production, and Acquisition

Our results leave open the causal mechanism leading to the observed optimization,

in particular, whether optimization is the result of minimizing effort during comprehension,

production, or acquisition. One possibility is that optimization reflects an effort on the side

of the speaker to produce utterances that are easy to comprehend by listeners, a strategy

known as audience design (Brennan & Williams, 1995; H. H. Clark & Murphy, 1982;

Lindblom, 1990). More efficient memory–surprisal tradeoffs are useful from the listener’s

perspective because they allow for better prediction with lower memory investment than

less efficient tradeoffs.

Another possibility is that optimization reflects production-internal pressures to

minimize effort on the speaker’s part during sentence planning (Bock & Warren, 1985;

Fedzechkina & Jaeger, 2020; Ferreira & Dell, 2000; MacDonald, 2013). That is, instead of

speakers optimizing for the benefit of listeners, the iterated application of

production-internal heuristics that reduce speaker effort may result in more efficient

tradeoffs (MacDonald, 2013). While our theory is stated in terms of the efficiency of

language processing for a comprehender of language, we can show that an analogous

memory–surprisal tradeoff exists in language production, and that speakers with bounded

memory capacity can minimize production errors when the language has stronger

information locality. For discussion including mathematical proofs, see SI Section 1.4.



TRADEOFF OF MEMORY AND SURPRISAL 52

Depending on the precise formalization of the production problem, the production-oriented

version of the memory–surprisal tradeoff may or may not be identical the

comprehension-oriented version we have presented here. We leave the proper formulation of

an information-theoretic model of production to future work.

Finally, optimization may reflect biases that come into play during language

learning. It is possible that memory efficiency makes languages more learnable, as learning

should require less memory resources for languages with more efficient memory–surprisal

tradeoffs. Evidence from artificial language learning experiments suggests that language

acquisition is biased towards efficiency in communication and processing (e.g. Fedzechkina

et al., 2017; Fedzechkina, Jaeger, & Newport, 2012).

Relation to Models of Sentence Processing

There is a substantial literature proposing sentence processing models and

quantitative memory metrics for sentence processing. In this section, we discuss how our

theoretical results relate to and generalize these previously proposed models. We do not

view our model as competing with or replacing any of these models; instead, our

information-theoretic analysis captures aspects that are common to most of these models

and shows how they arise from very general modeling assumptions.

In the Information Locality Bound Theorem, we proved a formal relationship

between the entropy of memory HM and average surprisal SM . We made no assumptions

about the architecture of incremental memory, and so our result is general across all such

architectures. Memory representations do not have to be rational or optimal for our bound

in Theorem 1 to hold. There is no physically realizable memory architecture that can

violate this bound.

However, psycholinguistic theories may differ on whether the entropy of memory

HM really is the right measure of memory load, and on whether average surprisal SM really

is the right predictor of processing difficulty for humans. Therefore, in order to establish



TRADEOFF OF MEMORY AND SURPRISAL 53

that our information-theoretic processing model generalizes previous theories, we will

establish two links:

• Our measure of memory usage generalizes theories that are based on counting

numbers of objects stored in incremental memory (e.g., De Santo, 2020; Frazier, 1985;

Gerth, 2015; Gibson, 1998; Graf et al., 2015; Graf & Marcinek, 2014; Graf, Monette,

& Zhang, 2017; Kobele, Gerth, & Hale, 2013; Miller & Chomsky, 1963; Yngve, 1960).

Furthermore, for theories where memory is constrained in its capacity for retrieval

rather than storage (e.g., Lewis & Vasishth, 2005; McElree, Foraker, & Dyer, 2003),

the information locality bound will still hold.

• Our predictor of processing difficulty (i.e., average surprisal) reflects at least a

component of the predicted processing difficulty under other theories.

Below, we discuss the connections between our theory and existing theories of

human sentence processing with regard to the points above.

Storage-Based Theories. There is a long tradition of models of human language

processing in which difficulty is attributed to high working memory load. These models go

back to Yngve (1960)’s production model, where difficulty was associated with moments

when a large number of items have to be kept on a parser stack; this model correctly

predicted the difficulty of center-embedded clauses, but problematically predicted that

left-branching structures should be hard (Kimball, 1973). Other early examples include

Miller and Chomsky (1963) and Frazier (1985)’s measure of syntactic complexity based on

counting the number of local nonterminal nodes. More recently, a line of literature has

formulated complexity metrics based on how many nodes are kept in incremental memory

for how long during parsing, and used linear or ranked combinations of these metrics to

predict acceptability differences in complex embeddings (De Santo, 2020; Gerth, 2015; Graf

et al., 2015; Graf & Marcinek, 2014; Graf et al., 2017; Kobele et al., 2013; Rambow &

Joshi, 2015).



TRADEOFF OF MEMORY AND SURPRISAL 54

Our measure of memory complexity—i.e., the memory entropy

HM—straightforwardly generalizes measures based on counting items stored in memory. If

each item stored in memory requires k bits of storage, then storing n items would require a

capacity of nk bits in terms of memory entropy HM . In general, if memory entropy is HM

and all items stored in memory take k bits each to store, then we can store HM/k items.

However, the memory entropy HM is more general as a measure of storage cost, because it

allows that different items stored in memory might take different numbers of bits to store,

and also that the memory representation might be able to compress the representations of

multiple items when they are stored together, so that the capacity required to store two

items might be less than the sum of the capacity required to store each individual item.

Previous work has argued that visual working memory is characterized by an

information-theoretic capacity limit (Brady et al., 2008; Sims et al., 2012); we extend this

idea to incremental memory as used in language processing.

The Dependency Locality Theory. The connection with the Dependency

Locality Theory is particularly interesting. Our lower bound on memory usage, described

in Theorem 1 Eq. 4, is formally similar to Storage Cost in the Dependency Locality Theory

(DLT) (Gibson, 1998, 2000). In that theory, storage cost at a given timestep is defined as

the number of predictions that are held in memory. Our bound on memory usage is stated

in terms of mutual information, which indicates the amount of predictive information

extracted from the previous context and stored in memory. As the notion of ‘number of

predictions’ is subsumed by the notion of ‘amount of predictive information’, our measure

generalizes DLT storage cost.

The other component of the DLT is integration cost, the amount of difficulty

incurred by establishing a long-term syntactic dependency. In our framework, DLT

integration cost corresponds to surprisal given an imperfect memory representation,

following Futrell, Gibson, and Levy, 2020.

There is one remaining missing link between our theory of processing difficulty and
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theories such as the Dependency Locality Theory: our information locality theorem says

that statistical dependencies should be short-term, whereas psycholinguistic theories of

locality have typically focused on the time-span of syntactic dependencies: words which

depend on each other to determine the meaning or the well-formedness of a sentence.

Statistical dependencies, in contrast, mean that whenever one element of a sequence

determines or predicts another element in any way, those two elements should be close to

each other in time.

If statistical dependencies, as measured using mutual information, can be identified

with syntactic dependencies, then that would mean that information locality is

straightforwardly a generalization of dependency locality. Futrell, Qian, Gibson,

Fedorenko, and Blank (2019) give theoretical and empirical arguments that this is so. They

show that syntactic dependencies as annotated in dependency treebanks identify word

pairs with especially high mutual information, and give a derivation showing that this is to

be expected according to a formalization of the postulates of dependency grammar. The

connection between mutual information and syntactic dependency has also been explored

in the literature on grammar induction and unsupervised chunking (A. Clark & Fijalkow,

2020; de Paiva Alves, 1996; Harris, 1955; McCauley & Christiansen, 2019; Yuret, 1998).

Cue-Based Retrieval Models. Work within cue-based retrieval frameworks has

suggested that working memory is not characterized by a decay in information over time,

but rather an accumulation of interference among similar items stored in memory (Lewis &

Vasishth, 2005, p. 408). In contrast, the formula for memory usage in Eq. 4 might appear

to suggest that boundedness of memory entails that representations have to decay over

time. However, this is not the case: our theorem does not imply that a listener forgets

words beyond some amount of time T in the past. An optimal listener may well decide to

remember information about words more distant than T , but in order to stay within the

bounds of memory, she can only do so at the cost of forgetting some information about

words closer than T . The Information Locality Lower Bound still holds, in the sense that



TRADEOFF OF MEMORY AND SURPRISAL 56

the long-term dependency will cause processing difficulty, even if the long-term dependency

is not itself forgotten. See SI Section 2.1–2.2 for a mathematical example illustrating this

phenomenon.

The ACT-R model of Lewis and Vasishth, 2005 also does not have an explicit

surprisal cost. Instead, surprisal effects are interpreted as arising because, in less

constraining contexts, the parser is more likely to make decisions that then turn out to be

incorrect, leading to additional correcting steps. We view this as an algorithmic-level

implementation of a surprisal cost: If a word wt is unexpected given the current state of

the working memory, then its current state must provide insufficient information to

constrain the actual syntactic state of the sentence, meaning that the parsing steps made

to integrate wt are likely to include more backtracking and correction steps. Thus, we

argue that cue-based retrieval models predict that the surprisal − logP (wt|mt) will be part

of the cost of processing word wt.

The Role of Surprisal. There are more general reasons to believe that any

realistic theory of sentence processing must include surprisal as at least a component of the

cost of processing a word, even if it is not explicitly stated as such. There are both

empirical and theoretical grounds for this claim. Empirically, surprisal makes a

well-documented and robust contribution to processing difficulty in empirical studies of

reading times and event-related potentials (Frank, Otten, Galli, & Vigliocco, 2015; Smith

& Levy, 2013). Theoretically, surprisal may represent an irreducible thermodynamic cost

incurred by any information processing system (Landauer, 1961; Still et al., 2012; Zénon

et al., 2019), and there are multiple converging theoretical arguments for why it should

hold as a cost in human language processing in particular (see Levy, 2013, for a review).

A few prior models explicitly include both surprisal and memory components

(Demberg & Keller, 2009; Rasmussen & Schuler, 2018). The model proposed by Demberg

and Keller (2009) assumes that processing cost is composed of surprisal and a verification

cost term similar to DLT integration cost. According to this term, processing of a new
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word costs more effort when the relevant prediction has not been accessed for a longer

time, or has low prior probability. While this model has separate costs for surprisal and for

memory access, their overall effect is similar to surprisal conditioned on memory

representations generated by an encoding function M that stores predictions made from

prior words and which decay over time: Processing cost is dominated by surprisal when a

word is predicted by information from the recent past, while processing cost is increased

when the relevant prediction stored in memory has been affected by memory decay. In the

model of Rasmussen and Schuler (2018), memory effects arise from interference in a

distributed model of memory, whereas surprisal effects arise from the need to renormalize

distributed representations of possible parse trees in proportion to their probability. The

explanation of memory effects can be viewed as a specific type of capacity constraint,

forcing M to take values in a fixed-dimensional vector space.

Previous Information Locality Results. Previous work has attempted to

derive the principle of information locality from incremental processing models. Futrell,

Gibson, and Levy (2020) describe a processing model where listeners make predictions (and

incur surprisal) based on lossy memory representations. In particular, they consider loss

models that delete, erase, or replace words in the past. Within this model, they were able

to establish a similar information locality result, by showing that the theoretical processing

difficulty increases when words with high pointwise mutual information are separated by

large distances. Pointwise mutual information is the extent to which a particular value

predicts another value in a joint probability distribution. For example, if we have words w1

and w2 in a sentence, their pointwise mutual information is:

pmi(w1;w2) ≡ log P (w2|w1)
P (w2)

.

Mutual information, as we defined it in Eq. 3, is the average pointwise mutual information

over an entire probability distribution.

Our information locality bound theorem differs from this previous result in three

ways:
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1. Futrell, Gibson, and Levy (2020) required an assumption that incremental memory is

subject to decay over time. In contrast, we do not require any assumptions about

incremental memory except that it has bounded capacity (or that retrieval operations

have bounded capacity; see above).

2. Our result is a precise bound, whereas the previous result was an approximation

based on neglecting higher-order interactions among words.

3. Our result is about the fall-off of the mutual information between words, conditional

on the intervening words. The previous result was about the fall-off of pointwise

mutual information between specific words, without conditioning on the intervening

words.

We would like to emphasize the last point: previous work defined information

locality in terms of the unconditional mutual information between linguistic elements. In

contrast, we advocate that conditional mutual information is more relevant for measuring

memory usage than unconditional mutual information. While the decay of conditional

mutual information provably provides a lower bound on memory entropy, the decay of

unconditional mutual information does not. In SI Section 2.3, we provide an example of a

stochastic process where unconditional mutual information does not decay with distance,

but memory requirements remain low.

Experience-Based and Connectionist Models. Our model and results are

compatible with work arguing that memory strategies adapt to language structure and

language statistics, and that experience shapes memory performance in syntactic processing

(e.g. MacDonald & Christiansen, 2002; Wells, Christiansen, Race, Acheson, & MacDonald,

2009). For instance, MacDonald and Christiansen (2002) argue for a connectionist model

in which network structure and language experience account for processing capacity. Such

models use recurrent neural networks with some fixed number of neurons, which can be

understood as a specific kind of constrained memory. A case in point is the observation
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that forgetting effects in nested head-final dependencies are reduced or absent in head-final

structures (Frank & Ernst, 2019; Frank, Trompenaars, & Vasishth, 2015; Vasishth, Suckow,

Lewis, & Kern, 2010), which has been modeled using connectionist models (Engelmann &

Vasishth, 2009; Frank, Trompenaars, & Vasishth, 2015), which can be interpreted as

modeling surprisal conditioned on imperfect memory (Futrell, Gibson, & Levy, 2020).

Limitations

Finiteness of Data. As corpora are finite, estimates for It may not be reliable for

larger values of t. In particular, we expect that models will underestimate It for large t, as

models will not be able to extract and utilize all available information over longer distances.

This means that we might not be able to consistently estimate the asymptotic values of the

average surprisal SM as the memory capacity goes to infinity, i.e. the entropy rate S∞. We

specifically expect this to happen in languages where less data is available (see SI Section

3.1 for corpus sizes). We expect this bias to be roughly equal in magnitude across real and

baseline languages for a given t, enabling us to compare across these languages at a given t.

The finiteness of data also has implications for the interpretation of the

memory–surprisal tradeoffs at higher values of memory entropy HM . In Study 2, the lowest

achieved surprisals are different for real and baseline orderings. This does not necessarily

mean that these orderings really have different entropy rates S∞. It is logically possible

that real and baseline languages actually have the same entropy rate S∞, but that baseline

orderings spread the same amount of predictive information over a larger distance, making

it harder for models to extract given finite corpus data. What our results do imply is that

real languages provide lower surprisals in the setting of relatively small memory budgets.

This result only depends on the estimates of It for small values of t, which are most

trustworthy. To the extent that It is underestimated even for small values of t, such a bias

equally applies to different ordering grammars. We therefore expect that estimating the

relative efficiency of different orderings at the same level of memory is still reliable (see SI
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Section 3.6 for supporting experiments comparing estimation with different sample sizes).

Nature of the Bound. Our theoretical result provides a lower bound on the

tradeoff curve that holds across all ways of physically realizing a memory representation

obeying the postulates (1–3). However, this bound may be loose in two ways.

First, architectural properties of human memory might introduce additional

constraints on possible representations. Depending on the role played by factors other than

infomation-theoretic capacity, the tradeoffs achieved by these human memory

representations need not be close to achieving the theoretical bounds.

Second, depending on properties of the stochastic process, the bound might be loose

across all models; that is, there are processes where the bound is not attainable by any

memory architecture. This can happen if there is strong uncertainty as to which aspects of

the past observations will be relevant to the future. We provide an artificial example with

analytical calculations in SI Section 2.1, but this example does not seem linguistically

natural.

Extralinguistic Context. Comprehension Postulate 1 states that the memory

state after receiving a word is determined by that word and the memory state before

receiving this word. The assumption about information flow disregards the role of

information sources that are external to the linguistic material in the sentence. For

instance, the interlocutors might have common knowledge of the weather, and the listener

might use this to construct predictions for the speaker’s utterances, even if no relevant

information has been mentioned in the prior discourse. Such sources of information are

disregarded in our model. They are also disregarded in many other models of memory in

sentence processing. Taking extralinguistic context into account would likely result in more

efficient tradeoffs, as this can introduce additional cues helping to predict the future better.

Limitations of Baseline Language Grammar Model. In Study 2, baseline

grammars are constructed in a formalism that cannot fully express some word order

regularities found in languages. For instance, it cannot express orders that differ in main
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clauses and embedded clauses (see discussion there for further limitations). These

limitations are common to most other order grammar formalisms considered in the

literature; despite these limitations, such word order models have demonstrated reasonably

good fits to corpus data and human judgments of fluency (Futrell & Gibson, 2015; Wang &

Eisner, 2016). These limitations do not affect the estimated tradeoffs of real orders.

However, the grammar model determines the baseline distribution, and thus impacts their

comparison with real orders. For example, to the extent that strict word order decreases

surprisal, this baseline distribution will put more weight on relatively efficient baselines,

potentially resulting in a smaller difference with real orders than for baseline distributions

that allow more flexibility. This limitation does not hold in Study 3, where the formalism

provides very close fit to observed morpheme orders.

Relation to linguistic typology

As a theory of linguistic typology, our Efficient Tradeoff Hypothesis aims to explain

universals in terms of functional efficiency (Haspelmath, 2008). We have shown that it

derives two previous typological principles—dependency length minimization and the

Proximity Principle—which have been claimed to explain typological patterns such as

Greenberg’s harmonic word order correlations (Dryer, 1992; Greenberg, 1963), universal

tendencies to order phrases with respect to their length (Behaghel, 1909; Chang, 2009;

Wasow & Arnold, 2003), and the order of morphemes within words (Bybee, 1985; Givón,

1985). The Efficient Tradeoff Hypothesis explains these apparently disparate phenomena

via a simple and easily operationalizable principle of information locality: elements with

high mutual information are expected to be close to each other.

The idea of information locality goes beyond the idea of dependency length

minimization by claiming that the strength of the pressure for words to be close to each

other varies in proportion to their mutual information. This allows information locality to

make predictions where dependency length minimization does not, for example in the order
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of elements with the noun phrase, including adjective ordering. These predictions have met

with empirical success (Futrell, 2019; Futrell, Dyer, & Scontras, 2020; Hahn, Degen,

Goodman, Jurafsky, & Futrell, 2018) (cf. Kirby, Culbertson, & Schouwstra, 2018).

Given the success of the memory–surprisal tradeoff in capturing previous

generalizations and in making new ones, further work on using the tradeoff to predict more

properties of languages seems promising. In this connection, we note that the

memory–surprisal tradeoff is mathematically non-trivial, and its properties have not yet

been fully explored. We have provided only a lower bound on the tradeoff and shown that

it derives a principle of information locality. A fuller mathematical treatment may reveal

further predictions to be tested, perhaps expanding the empirical coverage of the theory.

One limitation of our current treatment of the memory–surprisal tradeoff is that its

predictions are invariant with respect to word order reversal.12 That is, it does not make

any direct predictions about what elements should go earlier or later in a sentence; rather,

it only predicts what elements should be relatively close or far from each other. This

limitation means that the theory might not capture widespread universals which are not

invariant to word order reversal, for example the fact that suffixes are generally preferred

over prefixes in morphology (Cutler, Hawkins, & Gilligan, 1985), or the fact that elements

which are animate, given, definite, and frequent tend to go earlier in sentences (Bock &

Warren, 1985). Similarly, any asymmetries between head-final and head-initial

constructions and languages are beyond the reach of our treatment. These

order-asymmetrical universals have been explained in previous work using principles such

as easy-first production (e.g., Bock & Warren, 1985; MacDonald, 2013) and the principle of

Maximize Online Processing (MaxOP: Hawkins, 2004, 2014).

However, this invariance to reversal applies only to our lower bound on the

memory–surprisal tradeoff curve; the true curve may not generally be invariant to word

order reversal (cf. Crutchfield, Ellison, & Mahoney, 2009). Therefore, a more complete

12 For a mathematical proof, see SI Section 1.5.
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mathematical treatment might make predictions that are not invariant to word order

reversal. We leave it to future work to derive these predictions and to determine if they

match the typological data and the intuitions underlying theories such as MaxOP.

Relation to information-theoretic studies of language

Our work opens up a connection between psycholinguistics, linguistic typology, and

statistical studies of language. Here, we survey the connections between our work and

previous statistical studies.

The average surprisal of real and counterfactual word orders has been studied by

Gildea and Jaeger (2015) and Hahn et al. (2020). Gildea and Jaeger (2015) found that, in

five languages, real orders provide lower trigram surprisal than baseline languages. This

work can be viewed as instantiating our model in the case where the encoding function M

records exactly the past two words, and showing that these five languages show

optimization for surprisal under this encoding function. Hahn et al. (2020) compared

surprisal and parseability for real and baseline orders as estimated using neural network

models, arguing that word orders optimize a tradeoff between these quantities. The results

of Experiment 2 complement this by showing that real word orders optimize surprisal

across possible memory capacities and memory encoding functions.

While we define information locality in terms of conditional mutual information,

prior work has studied how unconditional mutual information decays with distance in

natural language texts, at the level of orthographic characters (Ebeling & Pöschel, 1994;

Lin & Tegmark, 2017) and words (Futrell et al., 2019). The link between memory and

information locality provided by our Theorem 1 appears to be a novel contribution. The

closest existing result is by Sharan, Kakade, Liang, and Valiant (2016), who show a link

between excess entropy and approximability by n’th order Markov models, noting that

processes with low excess entropy can be approximated well with Markov models of low

order.
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Our formalization of memory is related to studies of dynamic systems in the physics

literature. Our memory–surprisal curve is closely related to the predictive information

bottleneck introduced by Still (2014) and studied by Marzen and Crutchfield (2016); in

particular, it is a version of the recursive information bottleneck (Still, 2014, §4).

Hahn and Futrell (2019) empirically estimate the predictive information bottleneck tradeoff

of natural language using neural variational inference, providing an upper bound on the

trade-off, whereas the current paper provides a lower bound.

In the limit of optimal prediction, our formalization of memory cost is equivalent to

the notion of statistical complexity (Crutchfield & Young, 1989; Shalizi & Crutchfield,

2001); in our terminology, the statistical complexity of a stochastic process is the minimum

value of HM that achieves SM = S∞. Furthermore, in the limit T →∞, the quantity in

Eq. 4 is equal to another quantity from the theory of statistical complexity: excess

entropy (Crutchfield & Young, 1989), the mutual information between the past and future

of a sequence.

Our results are also closely related to information-theoretic scaling laws that

characterize natural language, and in particular the Relaxed Hilberg Conjecture (Dębowski,

2015, 2020; Hilberg, 1990). The Relaxed Hilberg Conjecture is the claim that the average

surprisal of a t’th-order Markov approximation to language decays as a power law in t:

St ≈ kt−α + S∞,

with the Hilberg exponent α ≈ 1
2 , and k a scaling factor. The Relaxed Hilberg Conjecture

implies that conditional mutual information It falls off with distance as

It = St − St+1

∝ t−α − (t+ 1)−α .

The steepness of the fall-off of mutual information depends on the value of the Hilberg

exponent α. As α gets small, the fall-off of mutual information is more rapid,

corresponding to more information locality. Therefore, our Efficient Tradeoff Hypothesis
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can be read as a claim about the Hilberg exponent α for natural language: that it is lower

than would be expected in a comparable system not constrained by incremental memory.

Conclusion

In this work, we have provided evidence that human languages order elements in a

way that reduces cognitive resource requirements, in particular memory effort. We

provided an information-theoretic formalization of memory requirements as a tradeoff of

memory and surprisal. We showed theoretically that languages have more efficient tradeoffs

when they show stronger degrees of information locality. Information locality provides a

formalization of various locality principles from the linguistic literature, including

dependency locality (Gibson, 1998), domain minimization (Hawkins, 2004), and the

proximity principle (Givón, 1985). Using this result, we provided evidence that languages

order words and morphemes in such a way as to provide efficient memory–surprisal

tradeoffs. Therefore, the memory–surprisal tradeoff simultaneously provides (1) a unified

explanation of diverse typological phenomena which is rigorously grounded in the

psycholinguistics literature, (2) a theory which makes new successful quantitative

predictions about word and morpheme order within and across languages, and (3) a

mathematical framework relating universals of language to principles of efficient coding

from information theory.

Our result shows that wide-ranging principles of order in natural language can be

explained from highly generic cognitively-motivated information-theoretic principles. The

locality properties we have discussed are some of the most characteristic properties of

natural language, setting natural language apart from other codes studied in information

theory. Therefore, our result raises the question of whether other distinctive characteristics

of language—for example, mildly context-sensitive syntax, duality of patterning, and

compositionality—might also be explained in terms of information-theoretic resource

constraints.
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Figure 9

Surprisal (y-axis) at given memory level (x-axis), for real, fitted, and baseline orders. For

the real and fitted orders, we provide the median across multiple random seeds of the neural

network estimator for It (see SI Section 3.2.2), and 95% confidence bands. For the baseline

grammars, we provide the median across both the sampled baseline grammars and multiple

random seeds of the estimator, and 95% confidence bands for this median.
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Figure 10

Histograms for the Area under the Curve (AUC) for the memory–surprisal tradeoffs for

real, fitted, and random orders. We provide a kernel density smoothing estimate of the

distribution of random baseline orders. A smaller AUC value indicates a more efficient

tradeoff. In most cases, the real and fitted orders provide more efficient tradeoffs than most

or all baseline grammars.
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Figure 11

Word order freedom and strength of optimization: For each of the 54 languages, we show

word order freedom as measured by branching entropy, and the difference between the real

order’s surprisal and the median surprisal of the baseline grammars, at the maximum

memory value (see Figure 9). Languages with higher branching direction entropy show a

smaller reduction in surprisal compared to baseline orders. For Czech, we also provide an

estimate accounting for information strcuture (red dot), see below, ‘Controlling for

Information Structure‘, for more information.
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Figure 12

Left: Memory-surprisal tradeoff for Czech with information structure. Right: AUC for

Czech, for baselines without information structure and baselines with information structure.

Optimization of real orders is stronger when considering information structure in baselines.
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Figure 13

Areas under the curve for the memory–surprisal tradeoff for verb affixes in Japanese (left)

and Sesotho (right). For the baseline grammars, we show a Kernel Density estimate. In

both Japanese and Sesotho, real and optimized orderings lead to lower AUC than all of the

40 baseline samples.
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Real Optimized

1 Subject Subject

Subject (rel.) Subject (rel.)

2 Negation Tense/aspect

3 Tense/aspect Negation

4 Object Object

Stem Stem

1 Reversive Passive

2 Causative Reciprocal

Neuter Tense/aspect

Applicative Neuter

Reciprocal Relative

3 Passive Causative

4 Tense/aspect Applicative

5 Mood Interrogative

6 Interrogative Reversive

Relative Mood
Table 4

Comparing order of Sesotho affixes in the observed orders (left) and according to an

approximatively optimized grammar (right). Note that order was separately optimized for

prefixes and suffixes.
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Error Frequency

Negation Tense/aspect 12

Error Frequency

Mood Interrogative 2204

Mood Relative 858

Applicative Tense/aspect 347

Causative Tense/aspect 174

Neuter Tense/aspect 155

Reversive Causative 100

Applicative Passive 81

Causative Passive 61

Applicative Relative 49

Causative Relative 41
Table 5

Errors in Sesotho prefixes (top) and suffixes (bottom). We show the ten most common

errors where both morphemes are among the high-frequency ones studied here.
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Figure 14

Left: It as a function of t, for two different hypothetical languages. It decays faster for the

MoreEfficient language: Predictive information about the present observation is

concentrated more strongly in the recent past. Right: t · It as a function of t for the same

languages.



TRADEOFF OF MEMORY AND SURPRISAL 92

0.0

0.5

1.0

1.5

2.0

0 2 4 6
t

C
on

di
tio

na
l M

ut
ua

l I
nf

or
m

at
io

n 
(I

t)

Order

A (Short)
B (Long)

0.0

0.5

1.0

1.5

2.0

0 2 4 6
t

t *
 It

Order

A (Short)
B (Long)

Figure 15

Left: Decay of conditional mutual information It, as a function of the distance t, for the

two versions in the artificial language. The areas under the two curves are identical,

corresponding to the fact that both orders are equally predictable. However, mutual

information decays faster in language A. Right: The minimal memory requirement tIt to

store It bits of information for timespan t, as a function of t. The area under the B curve

is larger, corresponding to larger memory demand for this order.
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