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Abstract
Pragmatic theories of utterance interpretation share the assumption that
listeners reason about alternative utterances that a speaker could have pro-
duced, but didn’t. For such reasoning to be successful, listeners must have
precise expectations about a speaker’s production choices. This is at odds
with the considerable variability across speakers that exists at all levels of
linguistic representation. This tension can be reconciled by listeners adapt-
ing to the statistics of individual speakers. While linguistic adaptation
is increasingly widely attested, semantic/pragmatic adaptation is under-
explored. Moreover, what kind of representations listeners update during
semantic/pragmatic adaptation – estimates of the speaker’s lexicon, or esti-
mates of the speaker’s utterance preferences – remains poorly understood.
In this work, we investigate semantic/pragmatic adaptation in the domain
of uncertainty expressions like might and probably. In a series of web-based
experiments, we find 1) that listeners vary in their expectations about a
generic speaker’s use of uncertainty expressions; 2) that listeners rapidly up-
date their expectations about the use of uncertainty expressions after brief
exposure to a speaker with a specific usage of uncertainty expressions; and 3)
that listeners’ interpretations of uncertainty expressions change after being
exposed to a specific speaker. We present a novel computational model of se-
mantic/pragmatic adaptation based on Bayesian belief updating and show,
through a series of model comparisons, that semantic/pragmatic adaptation
is best captured by listeners updating their beliefs both about the speaker’s
lexicon and their utterance preferences. This work has implications for both
semantic theories of uncertainty expressions and psycholinguistic theories of
adaptation: it highlights the need for dynamic semantic representations and
provides evidence against accounts that cast adaptation as simple low-level
priming.

Keywords: adaptation; language comprehension; experimental pragmatics;
Bayesian cognitive modeling; uncertainty expressions
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1 Introduction

One of the key assumptions about pragmatic reasoning is that listeners reason about
alternative utterances when interpreting a speaker’s utterance (Grice, 1975; Horn, 1984).
For example, consider the following sentences that give rise to scalar implicatures.

(1) a. Alex: Bill ate some of the cookies.
b.  Bill did not eat all of the cookies.

(2) a. Tom: The movie was okay.
b.  The movie was not great.

(3) a. Sue: It might snow tomorrow.
b.  It is not certain that it will snow tomorrow.

According to Gricean pragmatic theories, listeners assume that a speaker is cooperative
and arrive at the inference in (1b) through a counterfactual reasoning process: they reason
that if Alex had wanted to communicate that Bill ate all of the cookies, Alex would have
uttered the more informative statement Bill ate all of the cookies. Assuming that Alex knew
the truth regarding the more informative sentence, it must be that the more informative
statement is not true, which leads the listener to conclude (1b). Analogous reasoning leads
to the inferences in (2b) and (3b).

Accounts of pragmatic reasoning share the implicit assumption that listeners have
precise expectations about the speaker’s language use – specifically, which utterance alter-
natives were available to the speaker that they didn’t use – in different situations. Listeners
can only draw correct pragmatic inferences if they know what a speaker would have said to
communicate alternative world states. Arguably, this assumption is valid in many contexts –
after all, languages are highly conventional systems (Lewis, 1969). However, language users
also exhibit a great deal of variability in their phonetic, lexical, and syntactic choices (e.g.,
Allen, Miller, & DeSteno, 2003; Finegan & Biber, 2001; Harrington, Palethorpe, & Watson,
2000; Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967; Weiner & Labov, 1983).
For instance, the variability in use of quantifiers such as some and many and uncertainty
expressions like might and probably is reflected in listeners’ variable expectations of quan-
tifier use (Yildirim, Degen, Tanenhaus, & Jaeger, 2016) and in considerable inter-subject
variability in the interpretation of uncertainty expressions (Wallsten, Budescu, Rapoport,
Zwick, & Forsyth, 1986). This raises a puzzle: how can we reconcile the assumption of sta-
ble utterance alternatives required for capturing pragmatic inferences with what appears to
be rampant variability in speakers’ actual language use?

Recent work suggests that listeners deal with variability in language use by adapting
to it, i.e., by updating their expectations about a speaker’s likely productions (e.g., Fine &
Jaeger, 2016; Kamide, 2012; Kleinschmidt & Jaeger, 2015; Kraljic & Samuel, 2005; Nor-
ris, McQueen, & Cutler, 2003). In the domain of semantics/pragmatics, this is a process
known as semantic/pragmatic adaptation. In a series of experiments, Yildirim et al. (2016)
exposed participants to different speakers whose use of the quantifiers some and many var-
ied in descriptions of quantities of candies of a particular color like Some of the candies
are green. After exposure to a speaker, they probed participants’ expectations about the
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speakers’ likely descriptions of different quantities of green candies and found that partici-
pants indeed formed speaker-specific expectations. However, while the results consistently
suggest that listeners update some type of expectations, the nature of the expectations
that listeners update is unknown. In particular, it is an open question whether this kind
of semantic/pragmatic adaptation is a result of listeners learning speaker-specific utterance
preferences or whether listeners form speaker-specific semantic representations. Answering
this question about the nature of adaptation is the focus of the work reported here.

As a starting point for this investigation, we consider adaptation in other linguistic
domains. Apart from the work on quantifiers, linguistic adaptation has been observed
in phonetics (Babel, 2012; Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Goldinger, 1998;
Kleinschmidt & Jaeger, 2015; Kraljic & Samuel, 2005, 2007; Norris et al., 2003), syntax
(Fine & Jaeger, 2016; Fine, Jaeger, Farmer, & Qian, 2013; Kamide, 2012; Kroczek & Gunter,
2017; Myslín & Levy, 2016),1 intonation and prosody (Kurumada, Brown, & Tanenhaus,
2012; Roettger & Franke, 2019), and with phenomena such as referring expressions (Brennan
& Clark, 1996; Brennan & Hanna, 2009; Clark & Wilkes-Gibbs, 1986; Hawkins, Frank, &
Goodman, 2017; Horton & Gerrig, 2005; Metzing & Brennan, 2003), contrastive inferences
(Grodner & Sedivy, 2011; Pogue, Kurumada, & Tanenhaus, 2016), and lexical associations
(Delaney-Busch, Morgan, Lau, & Kuperberg, 2019).

For most of these phenomena, there is converging evidence regarding the representa-
tions that listeners update during adaptation. At the phonetic level, listeners update (at
least) their expectations about speakers’ mapping between acoustic cues and phonemes
(e.g., Kleinschmidt & Jaeger, 2015). At the syntactic level, listeners update (at least) their
expectations about speakers’ preferences for different syntactic structures. In contrast, at
the semantic/pragmatic level the adaptation process and the nature of the updated repre-
sentations is still poorly understood. This is not surprising considering that it is challenging
to directly probe beliefs about semantic representations or beliefs about speaker preferences
without a model that can quantitatively link behavioral data to these beliefs.

Recent advances in probabilistic modeling of pragmatic language understanding
within the Rational Speech Act (RSA) framework (Frank & Goodman, 2012; Franke &
Jäger, 2016; Goodman & Frank, 2016) allow us to formally investigate the two likely can-
didates for representations that are updated during semantic/pragmatic adaptation men-
tioned above: utterance preferences and semantic representations. To elaborate, listeners
might update their beliefs about speakers’ preferences for producing a particular expression
(e.g., a preference for might over probably) – analogous to syntactic adaptation. Alterna-
tively, listeners might update their beliefs about a speaker’s lexicon, i.e. their mapping
between words and world states (e.g., the range of event probabilities that probably is
compatible with) – analogous to phonetic adaptation. Finally, listeners might track both
preferences and mappings.

To illustrate how different beliefs about lexica and utterance preferences can lead to
different interpretations, consider the interpretation of the uncertainty expression probably
produced by three different hypothetical speakers. For the sake of this example, let us
assume the only three expressions that a speaker can choose from are might, probably, and

1Note, however, that some of these studies failed to replicate and it is still unclear under what circum-
stances syntactic adaptation can be observed (see Harrington Stack, James, & Watson, 2018; Liu, Burchill,
Tanenhaus, & Jaeger, 2017).
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Figure 1 . Lexica, utterance preferences and likely interpretation of probably for three dif-
ferent hypothetical speakers. The region of the probability scale covered by each line in the
Lexicon panel indicates the corresponding expression’s literal semantics. Height of bars in
the Cost panel indicates the speaker’s cost (dispreference) for each expression.

almost certainly. A listener’s beliefs about the three speakers’ lexica and preferences are
schematically illustrated in Figure 1.

First, consider speaker A, for whom might is semantically felicitous if the described
event probability (e.g., of snowing) exceeds 10%, probably if the event probability exceeds
60% and almost certainly if the event probability exceeds 90%. If a listener has accurate
beliefs about A’s mapping between expressions and event probabilities and observes A
produce the sentence It will probably snow, they will be likely to infer a probability of
snowing between 60 and 90%. As illustrated above, the reasoning follows the schema of a
standard scalar implicature (Grice, 1975; Horn, 1984): if A had intended to communicate
a probability above 90%, they could have said It will almost certainly snow, which would
have been more informative and equally relevant. Assuming the speaker knows the actual
event probability and is cooperative, it is therefore likely that the intended probability is
not above 90%.2

Now, consider speaker B, for whom might is semantically felicitous if the event prob-
ability exceeds 30%, probably if the event probability exceeds 75% and almost certainly if
the event probability exceeds 95%. If a listener has accurate beliefs about B’s mappings,
they will be likely to infer, via the same reasoning as above, a chance of snow between 75%
and 95% when they hear B produce the same sentence, It will probably snow.

Finally, consider speaker C. C uses the same mapping between expressions and event
probabilities as B. However, C has a strong preference against producing almost certainly.

2Under a standard Gricean view, the negation of the stronger alternative is inferred categorically. How-
ever, we adopt probabilistic language here in keeping with recent results that scalar inferences are more
aptly viewed as probabilistic inference under uncertainty (Goodman & Stuhlmüller, 2013).
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If a listener has accurate beliefs about C’s lexicon and production preferences, they will be
likely to infer a chance of snow between 75% and 100% when they hear C produce It will
probably snow since they will not consider almost certainly a likely alternative. That is,
the scalar inference will be blocked by the additional knowledge of the speaker’s production
preferences.

Thus, a listener who tracks the variability in these hypothetical speakers’ lexica and
production preferences will draw on average more accurate inferences about the world than
one who commits to a particular lexicon without updating it. We investigate the nature
of the representations updated during semantic/pragmatic adaptation in the the domain of
uncertainty expressions, i.e., words or phrases that can be used to express uncertainty, as
used in descriptions of potential future events. These expressions include epistemic modals
such as might, probably, and could (see, for example, Hacquard, 2011; Kratzer, 1991) but
also phrases such as it looks like, which have been primarily investigated in the experimental
pragmatics literature (e.g., Kurumada, Brown, Bibyk, Pontillo, and Tanenhaus, 2014; Pogue
and Tanenhaus, 2018).

Uncertainty expressions have several properties that make them a good testing ground
for studying semantic and pragmatic adaptation. First, there is no consistent mapping be-
tween uncertainty expressions and event probabilities (e.g., Clark, 1990; Pepper & Prytulak,
1974), which suggests that listeners have to rely on additional contextual information (such
as speaker identity) if they want to infer an event probability that a speaker intended to
communicate using an uncertainty expression. Second, there is considerable inter-speaker
variability in the use of these expressions (Wallsten et al., 1986) and therefore it is likely
that listeners expect different speakers to use these expressions differently. Lastly, inter-
preting uncertainty expressions plays an important role in many everyday situations from
the banal – such as talking about the weather – to the serious – such as communicating
about health risks (Berry, 2004; Lipkus, 2007; Politi, Han, & Col, 2007) or making financial
decisions (Doupnik & Richter, 2003). Thus, listeners would benefit from tracking how a
given speaker uses these expressions.

In order to establish the nature of the representations that are updated during adap-
tation to variable use of uncertainty expressions we proceed through the following steps:

1. Quantify the variability in listeners’ expectations about a generic speaker’s production
of uncertainty expressions (Experiment 1, Section 2).

2. Propose a probabilistic computational pragmatics model of production expectations
about uncertainty expressions that functions as proxy for listeners’ baseline generative
model of a generic speaker. Evaluate the model on the data from Experiment 1
(Section 3). The model is formulated within the Rational Speech Act framework, a
probabilistic formalization of Gricean pragmatic reasoning (Frank & Goodman, 2012;
Franke & Jäger, 2016; Goodman & Frank, 2016).

3. Measure whether and to what extent listeners update their expectations when exposed
to a speaker who is either more cautious or more confident in their use of uncertainty
expressions than the baseline speaker model (Experiment 2, Section 4).

4. Extend the baseline model to support learning in interaction. Create three versions of
this model which differ in terms of which model components are updated in response
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to exposure to simulated cautious and confident speakers: update of only production
preferences, only the lexicon, or both. Use model comparison between these three
adaptation models as a hypothesis-testing tool to infer which representations undergo
adaptation, by evaluating which adaptation model best captures the observed post-
exposure expectation data from Experiment 2 (Section 5).

5. To further test the adaptation models, use them to derive predictions about post-
exposure interpretation. Measure interpretation and evaluate the model (Experiment
3, Section 6).

We find that listeners indeed update their beliefs about different speakers’ use of
uncertainty expressions, and that this adaptation is reflected both in post-exposure measures
of production expectations and interpretation. The data are best captured by the adaptation
model in which both the lexicon and the speaker’s production preferences are updated.
We conclude with a discussion of remaining open questions and the implications of our
findings for theories of interactive (e.g., Pickering & Garrod, 2004, 2013) and partner-
specific language processing (e.g., Horton & Gerrig, 2005, 2016; Metzing & Brennan, 2003).

2 Experiment 1: Pre-exposure ratings

We first conducted a norming study, which served the following theoretical and
methodological purposes. First, it served as a methodological check on whether the
paradigm is suited for manipulating fine-grained event probabilities. Second, it addressed
the theoretical question of whether listeners vary in their expectations about a generic
speaker’s use of uncertainty expressions, by collecting participants’ judgments about un-
certainty expressions they expected speakers to use for varying probabilities of receiving
gumballs of a particular color from a gumball machine. Third, the results from this study
informed the experimental design of the adaptation experiments reported in later sections,
by allowing us to both choose which pair of uncertainty expressions to test adaptation on,
and to determine the particular event probability for which participants had roughly equi-
probable expectations about which expression of uncertainty a generic speaker would use
to report an event with that probability. Lastly, we used the data collected in this study to
estimate population-level prior beliefs for the adaptation model reported in Section 5.

2.1 Participants

We recruited a total of 420 participants (20 per condition) on Amazon Mechanical
Turk. We required participants to have a US-based IP address and a minimal approval
rating of 95%. Participants were paid $1.80 (condition 1), $1.50 (conditions 2-15), or $2.00
(conditions 16-21), depending on the number of trials, which amounted to an hourly wage
of approximately $12–$15.

2.2 Materials and Procedure

This study was a forced-choice production experiment. Participants were instructed
that over the course of the experiment, they would see several scenes with an adult man,
a young girl, and a gumball machine on a table and that the gumball machine is too high
up on the table for the girl to see (see Figure 2 for an example scene). After completing an
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Figure 2 . Example trial from Experiment 1.

attention check which asked participants whether the girl could see the gumball machine,3
participants saw a series of scenes and were asked to rate how likely they thought it was
that the adult would produce two given responses by distributing 100 points across the
two given utterances and the blanket something else option (other). Sliders automatically
jumped back if participants tried to distribute more than 100 points. In each scene, the
child uttered “I want a blue one” (target color: blue) or “I want an orange one” (target
color: orange), randomized across participants.4 The gumballs in the machines were tossed
around continuously to prevent participants from counting the gumballs and to make sure
that participants did not consider it more likely to get one of the gumballs at the bottom of
the machine. In each of the 21 conditions, participants saw only two of the following seven
possible adult utterances with different uncertainty expressions:

• You’ll get a blue/orange one. (bare5)
3Participants had to go back to the instructions in case they responded incorrectly. This was the case

for 41 participants.
4In condition 1 (bare-might), as well as conditions 16-21 (all conditions with bare not), the target color

was randomized across trials. While randomization of the target color across trials increased the correlation
between the ratings for the two colors, the average ratings for each condition independent of the target color
were not affected by this choice. See Appendix A or a detailed discussion of the effect of this manipulation
on the ratings.

5As a notational convention, we refer to utterances with uncertainty expressions in small caps and to
the uncertainty expression itself in italics.
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Figure 3 . Results from 3 conditions of Experiment 1. Error bars correspond to bootstrapped
95%-confidence intervals.

• You might get a blue/orange one. (might)

• You’ll probably get a blue/orange one. (probably)

• I think you’ll get a blue/orange one. (think)

• It looks like you’ll get a blue/orange one. (looks like)

• You could get a blue/orange one. (could)

• You won’t get a blue/orange one. (bare not)

Within each condition, we manipulated the percentage of target color gumballs across trials,
which we take as proxy for the objective probability of receiving a gumball of the target color.
Each participant saw 3 trials6 for each of the following percentages: 0%, 10%, 25%, 40%,
50%, 60%, 75%, 90%, 100%. We randomized the order of expressions across participants
and trials were presented in randomized order.

2.2.1 Results and Discussion. Figure 3 shows participants’ ratings for different
gumball proportions for 3 of the 21 conditions, namely all combinations of the conditions
with the utterances bare, probably, and might (see Appendix B for the results from the
other 18 conditions). The results from these three conditions highlight several important
properties of participants’ behavior in this experiment that generalize to all conditions.
First, the ratings for individual utterances are influenced by the utterance choices presented
to participants. If we compare the ratings for might in the bare-might and the might-
probably condition, we see that might received high ratings for a larger range of event
probabilities when it is paired with bare than when it is paired with probably. We
observe similar effects for the other two utterances. This suggests that participants are cued

6In condition 1 (bare-might), participants saw each gumball machine 6 times – 3 times when being asked
to produce a statement about orange gumballs and 3 times when being asked to produce a statement about
blue gumballs. In conditions 15-20 (all conditions with bare not), participants saw each machine 4 times: 2
times for each color.
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Figure 4 . Results of three individual participants in the might-probably condition of the
Experiment 1.

towards using the utterances provided in the experiment and that their ratings depend on
the presented alternatives – an effect that has also been observed for quantifiers (Degen &
Tanenhaus, 2016).

Second, the results suggest that participants are sensitive to the different event proba-
bilities and that this paradigm is well suited to study the mapping between event probabili-
ties and uncertainty expressions. For example, in the might-probably condition, participants
provided considerably different ratings when they were presented with a gumball machine
with 50% target color gumballs than when they were presented with 60% target color gum-
balls.

Third, in all conditions, the mean ratings are graded and except for the 0% and 100%
target color gumball trials, the average rating for none of the utterances is close to 100.
There are two potential explanations for this observation. It could be that participants
provided categorical ratings, i.e., generally assigned 100 points to one of the three options
but the category boundaries vary across participants which leads to the graded average
ratings. It could also be that participants’ individual ratings are graded which could reflect
participants’ uncertainty about which utterance a speaker would use and that these individ-
ual graded ratings drive the graded average ratings. If we look at individual participants’
ratings, it appears to be a combination of both. Figure 4 shows the responses of three
individual participants in the might-probably condition. These figures show that there is a
range of gumball proportions for each participant for which they assigned similar ratings
to two utterances, which suggests uncertainty about the speaker’s utterance choice. At
the same time, however, this range also differed across participants: Participant #8, who
considered the experimental speaker a “cautious” speaker, thought that the speaker would
only be likely to use probably when the objective probability of getting a target color
gumball was greater than 0.75, whereas participant #15, who considered the experimental
speaker a “confident” speaker, thought that probably was a better utterance choice than
might when the objective probability of getting a target color gumball was just greater
than 0.5. These observations suggest that for some event probabilities, participants have
uncertainty about a speaker’s choice of uncertainty expression and that participants have a
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priori different expectations about how a generic speaker would use these expressions.
This uncertainty and variability seems to be particularly borne out in the might-

probably condition. For this reason, we chose this pair of expressions to study listeners’
adaptation to variable uses of uncertainty expressions.

3 Modeling expectations about uncertainty expression productions

In this section we report a computational model of expectations about uncertainty
expression productions that is informed by the data from the experiment reported above,
and which will serve as proxy for listeners’ baseline generative model of a generic speaker,
and which we will use as the basis for investigating adaptation processes. What are the
properties that this model should have?

Experiment 1 confirmed previous findings that participants’ expectations about how
a generic speaker would use uncertainty expressions depend on the set of utterances that
participants can choose from. We further found that ratings were graded in part because
participants seemed to have uncertainty in their expectations about how a generic speaker
would use uncertainty expressions. Hence, a model predicting participants’ beliefs about
a speaker’s productions of uncertainty expressions should (a) be able to capture differ-
ences in ratings depending on the availability of alternative utterances; (b) provide graded
predictions about utterance probabilities; and (c) be able to capture within-participant
uncertainty about probability of use.

Computational game-theoretic models such as the Rational Speech Act framework
(RSA; Goodman and Frank, 2016) are uniquely suited to fulfill these desiderata. RSA
models are a probabilistic formalization of Gricean pragmatics which model comprehension
as Bayesian probabilistic inference. They consist of listener and speaker agents which re-
cursively reason about each other to derive interpretations and choose utterances. For our
purposes of modeling production expectations, we focus on the speaker model, which cru-
cially bases its predictions on a set of alternative utterances. According to an RSA model,
a speaker who wants to convey some information to a listener chooses her utterance based
on the utterance’s utility compared to the utility of alternative utterances. The speaker’s
utterance utility is determined by trading off the informativity of the utterance to a literal
listener on the one hand and the cost of the utterance on the other.

In defining the informativity of an utterance, we follow previous RSA models of
uncertainty expressions (Herbstritt and Franke, 2019; Lassiter and Goodman, 2017) and
assume that uncertainty expressions have a threshold semantics, i.e., for each uncertainty
expression e, there exists some threshold θe ∈ [0, 1] such that an utterance ue with e is
semantically felicitous if the probability φ of the proposition embedded under e exceeds
θe. For example, if we assume the threshold for might, θmight, is 0.1, then the statement
“It might rain this afternoon” is true if the probability of rain in the afternoon exceeds
0.1. Formally, we base the computation of informativity on a probability distribution from
utterances to event probabilities φ, which is usually referred to as the literal listener L0 in
the RSA framework.

L0 (φ | ue, θe) ∝ P (φ)1 [φ > θe] (for positive embedded propositions)

L0 (φ | ue, θe) ∝ P (φ)1 [φ < θe] (for negated embedded propositions)
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P (φ) is a prior distribution over event probabilities, which is independent of the
utterance by the speaker.

A pragmatic speaker S1 who wants to communicate an event probability φ then
chooses her utterance ue with uncertainty expression e from a set of utterances U according
to a soft-max choice rule (Luce, 1959; Sutton & Barto, 1998) such that she chooses u with
a probability proportional to her speaker utility.

S1 (ue | φ, θ, c) ∝ exp (λ (logL0 (φ | ue, θe)− c(ue)))

λ is a rationality parameter which governs how likely a speaker is to choose the utterance
that maximizes her utility; as λ approaches infinity, a speaker is more likely to always choose
the optimal utterance.
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Figure 5 . Example threshold distributions (upper panels) and corresponding model pre-
dictions by the expected pragmatic speaker model (lower panels). In this example, the set
of possible utterances is U = {bare, might, probably, bare not}, all utterances have
equal costs, the rationality parameter λ is set to 10, and the prior probability over event
probabilities P (φ) is a uniform distribution. As the panels on the left show, point estimates
of thresholds lead to sharp categorical boundaries in the model predictions, whereas dis-
tributions over thresholds, as in the panels on the right, lead to gradually increasing and
decreasing predicted utterance ratings.

S1 crucially depends on a vector of thresholds θ which contains a threshold for each
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uncertainty expression in the utterances in U , as well as a cost function c(u). The values
that speakers assign to these variables are unknown a priori; we infer these values from the
data collected in the previously above reported experiment. In Experiment 1, we found
that both at the population-level and at the individual-level, participants’ ratings of the
different expressions gradually increased and decreased with changing event probabilities
(as, for example, shown in Figure 4). This is expected if we assume that participants have
probabilistic beliefs about thresholds θ (as illustrated in the right panels of Figure 5) but not
so if we assume that participants are reasoning based on point estimates of θ (as illustrated
in the left panels of Figure 5). Considering these observations, we assume that listeners hold
beliefs about speakers’ thresholds in the form of a distribution P (θe).7 Analogously, we
assume that listeners also have beliefs P (c) about the speaker’s cost function. Using these
two distributions, we can define the expected pragmatic speaker ES1 (ue | φ) as follows:

ES1 (ue | φ) =
∫
P (c)

∫ 1

0
P (θ)S1 (ue | φ, θ, c) dθ dc

This model predicts which utterance a listener who has uncertainty about a speaker’s
thresholds and cost function would expect that speaker to use to describe different event
probabilities. Intuitively, this model is a weighted average of different speaker models with
differing thresholds and cost functions where the weights are determined by the listener’s
belief distributions over thresholds and costs.

3.1 Linking function

We assume that in Experiment 1, participants, when asked to provide ratings for ut-
terances, reasoned about the speaker’s likely descriptions of varying event probabilities. We
assume that this reasoning was guided by participants’ beliefs about the speaker’s thresh-
olds and costs, and that participants averaged over their uncertainty. For this reason, we
assume that the population-level average ratings of what participants expect the speaker
to say in different situations correspond to the probabilities predicted by the expected prag-
matic speaker model. Further, given the forced choice nature of the experiment and that
we are estimating model parameters from limited and potentially noisy data, we make the
following additional linking assumptions for which we provide a rationale and an assessment
of their importance in turn.

• Set of utterances: Across all conditions, we assume that the set of utterances that
participants are considering is the set of all utterances that we used in Experiment 1,
i.e., U = { bare, might, probably, think, looks like, could, bare not}. We
include all utterances instead of only the utterances that are presented in a given con-
dition since we assume that participants’ general knowledge of English uncertainty ex-
pressions also influences their ratings. Ideally, we would include even more utterances

7We leave it open whether a speaker samples from a distribution over thresholds when making utterances
(as suggested by Qing and Franke (2015)) or always uses the same values for thresholds. In the former
case, listeners could have higher-order beliefs P (η) about different speakers’ threshold distributions instead
of having direct beliefs about the thresholds that different speakers use. For our purposes, this distinction
does not matter since we would assume that listeners marginalize over their higher-order beliefs P (η) such
that P (θe) =

∫
P (η)P (θe | η) dη and we therefore take the simplest approach and directly model P (θe).
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in this set of alternatives but since we can only estimate parameters for uncertainty
expressions for which we collected ratings, we are limited to the utterances in U .
The exact set of utterances appears to be not that important for fitting the data
as long as the set includes the bare and bare not utterances as well as at least
one utterance with a weaker (e.g., might) and one with a stronger (e.g., probably)
uncertainty expression.

• something else option: Participants in condition C = {ua, ub} could only choose
between the three utterances U ′ = {ua, ub, something else}. For modeling data from
condition C , we therefore need a function to predict the ratings for the utterances in
U ′. For ua and ub, this is straightforward: We assume the probability of a participant
choosing ua or ub is proportional to ES1(ua | φ) and ES1(ub | φ), respectively. We
model the probability of a participant choosing the something else option as the
sum of the probability of all utterances that were not part of the condition as well
as a constant O, which accounts for probability mass assigned to utterances that
participants might be considering but which are not contained in U . This gives us the
following condition-specific function ES(C )

1 for predicting participants’ ratings.

ES
(C )
1 (u | φ) ∝

{
ES1(u | φ) if u ∈ C

O +
∑
u6∈C ES1(u | φ) if u is something else

This summation over alternative utterances is crucial for fitting the data since we
need to capture the ratings for something else. The only viable alternative would be
to fit individual curves for something else for each condition, which would require the
estimation of considerably more parameters and would not explain the ratings for the
something else option. The inclusion of the constant O is less important but it still
improves model fit.

• Cost function: We assume that the cost function represents participants’ beliefs
about the speaker’s preferences for different utterances. Lower costs of an utterance
indicate higher speaker preferences. We further assume that we are cueing participants
to believe that the speaker would be likely to use the two utterances, ua and ub, that
are provided in condition C = {ua, ub} and that participants therefore primarily use
the something else option when both of the two utterances are semantically infelicitous
or otherwise highly unexpected. We model this cueing effect in our choice of the
cost function c(u), which depends on the condition. For the two utterances that are
presented to the participants, we set the cost to 1 and for all the other utterances, we
set the cost to a constant γ:

c(u,C ) =
{

1 if u ∈ C

γ otherwise

Theoretically, we could have also used a different constant γu for each utterance. The
data from Experiment 1, however, suggests that participants generally did not prefer
one utterance over the other. To limit the number of free model parameters and to
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prevent overfitting, we therefore use a single constant γ for all utterances. We will,
however, relax this assumption in our adaptation model in Section 5, which we use to
investigate whether listeners update their beliefs about preferences during adaptation.

This condition-specific cost function is important for the model fit. If we didn’t use
such a cost function, the model would assign much higher ratings to the something
else option than participants did.

• Noise: Finally, to account for participants not paying attention or making mistakes,
we also include a noise term that models participants providing random ratings. The
amount of noise is captured by the noise strength parameter δ. This parameter indi-
cates the proportion of random responses, that is, the proportion of responses drawn
from a uniform distribution over the three condition-specific responses U ′.

The inclusion of the noise term is not crucial for fitting the data but it does improve
model fit and is common practice in RSA models whose parameters are estimated
from experimental data (see Herbstritt & Franke, 2019; Tessler & Goodman, 2019).

Incorporating all of these assumptions, we end up with the following noisy, condition-specific
expected pragmatic speaker model ES(C )′

1 (u | φ), which we use to predict participants’
ratings:

ES
(C )′

1 (u | φ) = δ × 1
|U ′|

+ (1− δ)× ES(C )
1 (u | φ)

For the prior distribution over event probabilities P (φ), which is used in the literal
listener L0, we use a uniform distribution over the interval [0, 1].8 For the distributions over
thresholds P (θe), we use a Beta distribution parametrized by αe and βe. The choice of Beta
distributions is motivated by two of its properties. First, the support of a Beta distribution
is the interval [0, 1] which corresponds to the exact range of possible values for θe.

The second reason for using Beta distributions is that, depending on the parameter-
ization, Beta distributions can take on very different shapes. This property is important
because we are making the simplifying assumption that all utterances in our experiments
have a threshold semantics. Such a semantics is commonly assumed for uncertainty expres-
sions such as probably (e.g., Lassiter, 2017; Yalcin, 2010), but it is unconventional for bare
assertions such as “You’ll get a blue one”, which are generally assumed to be semantically
felicitous only if the event is certain to happen, i.e., it has an event probability of 1. How-
ever, since Beta distributions can have a shape like the distribution for bare in the upper
right panel in Figure 5, the model has the capability to infer a semantics for the bare form
that is almost equivalent to a traditional semantics of bare assertions. In this parameter-
ization of the Beta distribution, most probability mass is assigned to values of θ close to

8To verify the assumption that the prior on event probabilities is uniform, we conducted a separate
norming study in which participants rated how likely they thought it was that a speaker described different
gumball machines containing different proportions of blue and orange gumballs after hearing an unintelligible
utterance. We found that on average participants rated all gumball machines equally likely which suggests
that the prior over event probabilities is indeed uniform.
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1, which is mathematically almost equivalent to a traditional semantics.9 Therefore, using
Beta distributions for the threshold distributions has the desirable effect of allowing us a
unified treatment of all expressions included in the model.

3.2 Parameter estimation

Given all the assumptions outlined above, the model has 18 parameters in total:
A cost parameter γ, a rationality parameter λ, a noise strength parameter δ, a constant
corresponding to other utterances O, and for each utterance, Beta distribution parameters
αe and βe. We estimated these parameters jointly from all 21 conditions of Experiment 1
using Bayesian data analysis (BDA; see, e.g., Kruschke, 2015). To construct the dataset,
we treated the ratings by each participant as a probability distribution from which we
sampled 10 utterances. We used highly uninformative uniform priors over the interval
[0, 15] for the Beta distribution and cost parameters, uniform priors over the interval [0, 7]
for the rationality parameter, and uniform priors over the interval [0, 0.5] for O and the
noise strength parameter. We estimated the vector of parameters Θ using MCMC with
a Metropolis Hastings sampler. To decrease autocorrelation of the chain, we collected a
sample only at every 10th iteration (i.e., we use thinning of 10). We discarded the first
10,000 burn-in samples and then collected 50,000 samples. We ran four MCMC chains
and confirmed convergence by computing the R̂-statistic (Gelman, Carlin, Stern, & Rubin,
2003). More details on the implementation of the model can be found in Appendix C.

3.3 Model evaluation
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Figure 6 . Model predictions and results from Experiment 1. Error bars correspond to
95% high density intervals (model predictions) and bootstrapped 95%-confidence intervals
(observed results).

9Alternatively, one can also see the threshold distribution for the bare form as a distribution over a
verification parameter η that governs how certain a speaker has to be to utter a bare assertion (see, e.g.,
Moss, 2018). Mathematically, our assumption of bare forms having a threshold semantics is equivalent to
assuming that bare assertions are only semantically felicitous when a speaker’s credence of the proposition
exceeds the verification threshold η.
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The result of the parameter estimation procedure is a posterior distribution over
parameters given the observed data P (Θ | Dobs). We evaluated the model fit by performing
a posterior predictive check (PPC; Kruschke, 2015). To this end, we took 10,000 samples
of parameters Θ from the posterior distribution and for each sample, we computed the
model predictions ES(C )′

1 (u | φ) parameterized by Θ. We then compared the average
model predictions to the mean ratings that participants had provided in the pre-exposure
experiments. We further computed the 95% high density interval (HDI; Kruschke, 2015)
which reflects the certainty of the model about its predictions.

Figure 6 shows the model predictions and the experimental data for three conditions
(see Table 1 and Appendix D for modeling results for all 21 conditions). As these plots
show, the model is able to capture almost the entire variance in participants’ average ratings.
Further, the 95% HDIs are very small which suggests that the model is certain about its
predictions. Both of these observations are also true for the model’s predictions for all the
other conditions. For 19 of the 21 conditions, the R2 value between the model predictions
and the experimental data exceeds 0.9, and for the remaining 2 conditions, the R2 value
exceeds 0.88.

Most cases in which the model predictions and the experimental data deviate concern
the ratings at the two extremes of the event probability space. The model often underpre-
dicts ratings for the something else option when there is either a 0% or a 100% chance of
getting a target color gumball. In these situations, participants presumably thought that
bare and bare not are the most appropriate utterances and therefore rate something else
highly unless we provide them with the bare or bare not options. The model predicts
this behavior to some extent but seems to assume that participants were cued more heavily
towards the presented utterance options than they actually were. This could be an indi-
cator that we should revisit our unconventional approach of treating the bare forms like
uncertainty expressions with a threshold semantics, since the model would predict higher
ratings for the something else at both ends of the scale if we assumed that the bare form and
its negation were only true in the cases of 100% and 0% event probabilities, respectively.
However, for our purposes in this paper, the exact predictions about production choices for
objectively certain events are not as important and hence we decided against revising the
assumption that all utterances in the model have a threshold semantics.

One potential concern given the flexibility of the model is that it could be overfitting
the data. This is unlikely considering that we are estimating only 18 parameters to predict
in total 567 data points (27 data points for each one of the 21 conditions) but to nevertheless
rule out this possibility, we performed a leave-one-out cross-validation of the model. For
each condition x, we estimated a distribution over parameters Θx using the data from all
conditions but x. We then compared the model predictions of the model parametrized by
Θx to participants’ ratings in condition x. This way, the model has to predict participant
behavior which it has not observed during parameter estimation. Table 1 shows the R2

values for participants’s ratings and model predictions for the model estimated from all
conditions and the leave-one-out models.

As this table shows, theR2 values remain high even if we exclude the data on which the
model is evaluated from the model’s training data, which suggests that our proposed model
indeed explains participants’ expectations of a generic speaker’s uncertainty expressions.

Lastly, one of the advantages of Bayesian cognitive models is that their parameters are
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Condition R2 (all data) R2 (leave-one-out)

bare-might 0.992 0.988
bare-probably 0.978 0.976
bare-could 0.978 0.976
bare-looks like 0.927 0.896
bare-think 0.968 0.964
might-probably 0.964 0.954
might-could 0.921 0.910
might-looks like 0.934 0.918
might-think 0.946 0.934
probably-could 0.961 0.959
probably-looks like 0.944 0.931
probably-think 0.888 0.860
could-looks like 0.924 0.910
could-think 0.931 0.920
looks like-think 0.970 0.960
bare not-bare 0.894 0.848
bare not-might 0.968 0.958
bare not-probably 0.910 0.893
bare not-could 0.910 0.840
bare not-looks like 0.927 0.903
bare not-think 0.933 0.920

Table 1
R2 values for experimental data and model predictions for model estimated from all data
and for models estimated from all conditions except the predicted condition.
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Figure 7 . Inferred threshold distributions. For the negative bare utterance (bare not),
the distribution is over an upper threshold, i.e., a bare statement embedded under negation
is true if the probability of the event is lower than the threshold. For all other utterances,
the distribution is over a lower threshold.
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interpretable. Figure 7 shows the maximum likelihood estimates of the inferred threshold
distributions P (θ) for the seven uncertainty expressions that we included in our experiments.
The first observation is that most threshold distributions have considerable variance rather
than being peaked at a particular value. This suggests that listeners have probabilistic
beliefs about the semantic thresholds.

As we discussed above, for the bare form and its negation, we expected the model to
infer threshold distributions whose probability mass is concentrated around θ = 1 and θ = 0,
respectively.10 As Figure 7 shows, this is indeed what the inferred threshold distributions
look like.

The threshold distribution for might has most of its probability mass concentrated at
values slightly above 0. This is in line with non-probabilistic accounts of the interpretation
of epistemic modals. These accounts generally assume that might p is true if there exists
some world w in a set of (contextually restricted) epistemically accessible worlds E such
that p is true in w (e.g., Hacquard, 2011; Kratzer, 1991; Swanson, 2008). One way to
translate this logical condition into our probabilisitic framework is to assume that in our
gumball machine context, there exists an epistemically accessible world w for each gumball
g and that in world w, one gets gumball g. Under this assumption, “You might get a blue
gumball” is true if there exists an epistemically accessible world w in which one gets a
gumball g that is blue. At the same time, if such a world exists, then P (blue gumball)
is greater than 0, which approximately corresponds to the threshold semantics with the
inferred threshold distribution of the model. The inferred threshold distribution for could
is similar to the one of might, which is again in line with non-probabilistic accounts, which
assume that epistemic might and epistemic could are semantically equivalent (Hacquard,
2011; Kratzer, 1991).

The threshold distribution for probably has most of its probability mass concentrated
at thresholds above .5. This is again compatible with existing accounts that assume that
probably p is true if p is more likely than the negation of p (e.g., Kratzer, 1991). However,
it is also noteworthy, that the inferred distribution has some probability mass below .5,
which empirically corroborates theoretical arguments by Yalcin (2010) that probably p can
sometimes also be true if p is less likely than the negation of p.

The threshold distributions for the remaining expressions, looks like and think also
match intuitions. The distribution for looks like has most of its probability mass near
threshold values of 1 but is overall slightly weaker, i.e., assigns higher probabilities to lower
thresholds, than the bare form. The distribution for think assigns most probability mass to
high thresholds, which is compatible with the intuition that speakers use think when they
strongly believe the embedded proposition but are not entirely certain that it is true.

Table 2 shows the MAP values and credible intervals for the remaining parameters.
The model inferred that speakers are relatively likely to choose an optimal utterance (re-
flected in the λ parameter being greater than 1); that utterances that are not included in
the experiment incur a considerable cost (reflected in the γ parameter being greater than
1); that about 7.4% of the data should be treated as noise (reflected in the δ parameter);
and that the production probability of utterances not included in our set of utterances is
low.

10Note that since the negation of the bare form is a negative form, θ is an upper threshold. For the bare
form as well as all the other utterances that we are are considering in this paper, θ is a lower threshold.
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λ (rationality) γ (cost) δ (noise) O (other utterances)

MAP 2.21 3.03 0.074 3.64× 10−5

CI [2.16, 2.26] [2.98, 3.08] [0.069, 0.079] [2.89× 10−5, 4.50× 10−5]
Table 2
Maximum a posteriori estimates (MAP) and 95% credible intervals (CI) for model param-
eters.

3.4 Interim summary

In this section, we described a computational model of production expectations of
uncertainty expressions. This model is couched within the RSA framework and assumes that
listeners hold beliefs about a speaker’s lexicon (in the form of utterance-specific threshold
distributions) and about speaker preferences (in the form of utterance-specific costs). We
estimated the free parameters of this model from the results of Experiment 1, which resulted
in a model that is able to accurately predict participant’s utterance ratings – i.e., their
expectations of use – in Experiment 1 across all conditions with a shared set of parameters.

In the following sections of this paper, we will use this model as the basis for modeling
adaptation. Since this model is able to capture different beliefs about thresholds and pref-
erences, it provides us with the opportunity to simulate the adaptation process as a result
of updating beliefs about these model parameters. Further, in order to answer our primary
research question of whether listeners update their beliefs about lexica or preferences, we
compare different adaptation simulations in which we allow different types of parameters
to be updated.

4 Experiment 2: Adaptation of speaker expectations

We now turn to our main research questions of whether and how listeners adapt
to variable uses of uncertainty expressions. In Experiment 1, we found that participants
show uncertainty in their expectations about a generic speaker’s use of might and probably.
Based on these results, we investigate in two experiments whether participants form speaker-
specific expectations about the use of might and probably.

4.1 Experiment 2a

In this experiment, we test whether participants update their production expectations
after observing a specific speaker’s use of uncertainty expressions for a short period of time.
The procedure, materials and analyses were pre-registered at https://osf.io/w926x/.

4.1.1 Participants. We recruited a total of 80 participants (40 per condition) on
Amazon Mechanical Turk. We required participants to have a US-based IP address and a
minimal approval rating of 95%. Participants were paid $2 which amounted to an hourly
wage of approximately $12–$15. None of the participants had previously participated in
Experiment 1.

4.1.2 Materials and procedure.
Exposure trials: In the first part of the experiment, participants saw 20 exposure

trials. These trials had a similar setup as the trials in Experiment 1: they also showed a
child requesting a blue or orange gumball and a gumball machine with blue and orange
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Experiment 2a Experiment 2b

might probably bare might probably bare
n φ n φ n φ n φ n φ n φ

cautious 10 60% 5 90% 5 100% 10 60% 10 90% 5 100%
confident 5 25% 10 60% 5 100% 10 25% 10 60% 5 100%

Table 3
Number of exposure trials (n) per utterance (might, probably, bare) and associated
proportion of target color gumballs (φ) in the cautious vs. confident speaker conditions in
Experiments 2a and 2b. Critical trials bolded.

gumballs. However, instead of the cartoon adult, they showed a video of an adult male
or female speaker (counterbalanced across participants) producing one of the following six
utterances:

• You’ll get a blue/orange one (bare)

• You might get a blue/orange one (might)

• You’ll probably get a blue/orange one (probably)

The number of trials with each of these utterances as well as the gumball proportions
varied across two conditions (see Table 3 for an overview). In the confident speaker condition,
participants saw 10 critical trials with 60% target color gumballs and the speaker producing
an utterance with probably (target color was randomized across trials), 5 filler trials with
100% target color gumballs and the speaker producing bare, and 5 filler trials with 25%
target color gumballs and the speaker producing might. In the cautious speaker condition,
participants saw 10 critical trials with 60% target color gumballs and the speaker producing
an utterance with might, 5 filler trials with 100% target color gumballs and the speaker
producing bare, and 5 filler trials with 90% target color gumballs and the speaker producing
probably. The filler trials contained utterance-event probability pairs that were rated very
highly in the might-probably condition of Experiment 1 (see Figure 3) and were intended to
boost confidence in the speaker.

Participants were instructed to watch what the speaker had to say to the child. The
video started automatically after a 400ms delay and participants had the option to replay
the video as often as they wanted. To advance to the next scene, participants had to press
a button which was disabled until the video clip had finished.

Test trials: The test phase was almost identical to the might-probably condition
of Experiment 1 except that the cartoon figure of the man was replaced with a picture
of the speaker that participants saw on the exposure trials. Participants were presented
with scenes containing gumball machines with 9 different proportions of blue and orange
gumballs (identical as in Experiment 1) and they were asked to provide ratings for the
utterances might and probably by distributing 100 points across these two utterances
and the blanket something else option. Participants provided two ratings for each of the 18
color-gumball machine combinations resulting in a total of 36 trials.
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Both speakers were from the East Coast and Native Speakers of North American
English. They were instructed to produce the utterances in a normal voice without any
special prosody. The speakers were naïve to the purpose of the experiment.

Attention checks. In order to verify that participants were paying attention to
the video and the scenes, we included 15 attention checks (6 during exposure and 9 during
test trials), which were randomly positioned within the two experimental phases. Trials
that contained an attention check either displayed or did not display (pseudo-randomized)
a small grey X somewhere around the gumball machine. After completing a trial with an
attention check, participants were asked whether they had seen a grey X in the previous
scenes or not.

4.1.3 Exclusions. We excluded participants who provided incorrect responses to
more than 3 of the attention checks. Based on this criterion, we excluded 11 participants in
the confident speaker condition and 8 participants in the cautious speaker condition. None
of the results reported below depend on these exclusions.

4.1.4 Analysis and predictions. Intuitively, we expect a more confident speaker
to use lower thresholds for probably and might than a more cautious speaker. Therefore, if
participants track these different uses, we expect their ratings to depend on how the speaker
used uncertainty expressions during the exposure phase. Concretely, in our forced choice
production paradigm, we expect participants in the confident speaker condition to rate
probably highly for a larger range of event probabilities than participants in the cautious
speaker condition. Following Yildirim et al., 2016, we quantified this prediction by fitting
a spline with four knots for each expression and each participant and computing the area
under the curve (AUC) for the splines corresponding to each expression and participant. The
area under the curve is proportional to how highly and for how large of event probabilities
participants rate an utterance. If an utterance is rated highly for a larger range of event
probabilities, the AUC will also be larger. We therefore tested whether listeners updated
their expectations according to these intuitions by computing the difference between the
AUC of the spline for might and of the spline for probably for each participant. We
predicted that the mean AUC difference would be larger in the cautious speaker condition
than in the confident speaker condition.

4.1.5 Results and discussion. Figure 8 shows the mean ratings for the three
options in the two conditions. As these plots show, participants updated their expectations
about the speaker’s language use and therefore made different predictions about how the
speaker would use uncertainty expressions. In the cautious speaker condition, participants
gave high ratings for might for a larger range of event probabilities than in the confident
speaker condition. On the other hand, participants gave high ratings for probably for a
larger range of gumball proportions in the confident speaker condition than in the cautious
speaker condition. These differences result in a significantly larger AUC difference in the
cautious speaker condition than in the confident speaker condition (t(59) = 4.98, p < 0.001,
see also left panel of Figure 9).

As Figure 8 shows, participants also differed in their ratings of the two utterances
when they were presented with a scene with 60% target color gumballs. In the cautious
speaker condition, participants rated might higher than probably; in the confident speaker
condition, the pattern was reversed and participants rated probably higher than might.
These expectations mirror the speaker behavior during the exposure phase and provide
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additional evidence that participants tracked the speaker’s usage of uncertainty expressions.
Our results further suggest that participants updated their mappings between un-

certainty expressions and event probabilities: In the confident speaker condition, might
and probably were rated highly for lower event probabilities than in the cautious speaker
condition. However, one potential confound in this experiment is that the number of utter-
ances with might and probably differed across the two conditions (see left part of Table 3).
It is possible that participants only learned that the cautious speaker overall prefers to use
might and the confident speaker prefers probably. To address this confound, we con-
ducted another experiment in which we balanced the number of exposures to might and
probably.

4.2 Experiment 2b

In this experiment, we aimed to replicate the results from Experiment 2a and test
whether listeners update their mappings between the uncertainty expressions and event
probabilities when they are exposed to a speaker who uses might and probably with the
same frequency. The procedure, materials and analyses were pre-registered at https://osf.
io/qnam7.

4.2.1 Participants. We recruited a total of 80 participants (40 per condition) on
Amazon Mechanical Turk. We required participants to have a US-based IP address and a
minimal approval rating of 95%. Participants were paid $2.20 which amounted to an hourly
wage of approximately $12–$15. None of the participants had participated in any of the
previous experiments.

4.2.2 Materials and procedure. Materials, conditions, and procedure were
identical as in Experiment 2a except that we added 5 additional fillers such that the fre-
quency of might and probably was the same (10 utterances per expression) in both
conditions. See right part of Table 3 for an overview.

4.2.3 Analysis and predictions. The analysis was identical as in Eperiment 2a.
We again predicted that the mean AUC difference would be bigger in the cautious speaker
condition than in the confident speaker condition.

4.2.4 Exclusions. We used the attention checks and exclusion criteria as in Ex-
periment 2a. Based on these criteria, we excluded 8 participants in the cautious speaker
condition, and 7 participants in the confident speaker condition.

4.2.5 Results and discussion. Figure 10 shows the mean ratings for the three
options in the two conditions. As these plots show, participants updated their expectations
about the speaker’s language use. As in Exp. 2a, the AUC difference was bigger in the
cautious speaker condition than in the confident speaker condition (t(63) = 2.99, p < 0.01,
see also right panel of Figure 9).

This experiment provides evidence against an account according to which participants
only learn that the cautious speaker prefers to use might and the confident speaker prefers
probably. Since the frequency of both expressions was the same in this experiment, par-
ticipants could not have inferred a preference for one of these two utterances. That we
nevertheless observed different ratings in the two speaker conditions suggests that partici-
pants updated their beliefs about the mapping between expression and event probabilities.

In summary, the results from Exps. 2a and 2b provide evidence for listener adaptation
to a specific speaker’s use of uncertainty expressions after a brief exposure phase. Further,
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Figure 10 . Mean post-exposure ratings from Experiment 2b. Error bars correspond to
bootstrapped 95%-confidence intervals. The grey dotted line highlights the ratings for the
60% event probability ratings.

taken together, these experiments suggest that listeners’ expectations about a speaker’s
language use are at least not exclusively driven by tracking speakers’ preferences for different
utterances. We investigate the nature of the updated expectations in the next section.

5 Adaptation model

The experimental results presented in the previous section suggest that listeners up-
date some expectations about language use when they interact with a speaker. However,
the nature of the updated representations is unclear. As mentioned in the introduction,
there are three likely candidates: first, it is possible that listeners update their expectations
about the speaker’s lexicon (i.e., the mapping between event probabilities and uncertainty
expressions); second, listeners might update their expectations about the speaker’s prefer-
ences; and third, they might update both their expectations about the speaker’s lexicon and
about the speaker’s preferences. The experimental results above suggest that it is unlikely
that listeners track only speaker preferences, but considering that beliefs about preferences
and beliefs about the lexicon can interact in complex ways (as illustrated in Figure 1), we
investigate all three options.

The production expectation model in Section 3 provides us with the opportunity to
formally evaluate these three hypotheses. Through a series of simulations of the adaptation
process, we can compare models in which different types of parameters are updated dur-
ing adaptation. Following work in modeling adaptation in other linguistic domains (e.g.,
Hawkins et al., 2017; Kleinschmidt, Fine, & Jaeger, 2012; Kleinschmidt & Jaeger, 2015;
Qing, 2014; Roettger & Franke, 2019), we assume that in interaction, listeners form beliefs
about a set of speaker-specific parameters ΘS .11 We further assume that the formation of

11Since the manipulation in our experiments was between subjects, our results do not provide direct evi-
dence that listeners are indeed adapting to speakers (as compared, for example, to the general experimental
situation). For now, we assume that listeners are adapting to specific speakers and we return to this issue
in the general discussion.
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these beliefs is an instance of Bayesian belief updating: listeners start off with prior beliefs
about ΘS based on their general knowledge about language and subsequently update their
beliefs about ΘS with every utterance they hear. That is, after observing a series of pro-
ductions D = d1, ..., dn where each di is an utterance-event probability pair di = (ui, φi),
listeners’ beliefs about ΘS are the result of performing Bayesian inference:

P (ΘS | D) ∝ P (ΘS)P (D | ΘS) = P (ΘS)
n∏
i=1

P (di | ΘS)

We assume that the likelihood function is the expected pragmatic speaker ES1 parameterized
by ΘS :

P (ΘS | D) ∝ P (ΘS)
n∏
i=1

ES1(ui | φi,ΘS)

5.1 Simulations

In order to investigate which parameters are updated during adaptation, we ran
simulations with varying prior structures, which correspond to different assumptions about
which parameters may be updated. The adaptation model crucially relies on a prior over
speaker-specific parameters P (ΘS) which reflects listeners’ prior beliefs about the use of
uncertainty expressions. For our simulations, we assumed that the means of this prior are
given by the estimates of the model parameters that we obtained from fitting the model
to the norming data. The variances reflect whether or not the parameter can be updated
in response to exposure. In particular, we used delta distributions, i.e., a distribution with
zero variance, to model a parameter that cannot be updated. We ran simulations on models
with the following three prior structures:

• Costs: The first prior structure corresponds to an adaptation process according to
which participants only learn speaker preferences during adaptation. We modeled the
prior over cost parameters as a log-normal distribution centered at the mean value in-
ferred from the norming data. Because we were interested in whether listeners update
their beliefs about speaker preferences, we relaxed the assumption from the norming
data model that all utterances have the same cost and assumed that each expression
has its own cost parameter indicating beliefs about the speaker’s preferences. Use of
the log-normal distribution was motivated by two reasons: First, cost must be greater
than zero, and the support of log-normal distributions is limited to numbers greater
than 0. Second, since the cost term is part of an exponent in the expected pragmatic
speaker model, differences on a logarithmic scale correspond to linear differences in
the model’s utterance probabilities. For the priors over all other parameters, we used
a delta distribution.

• Threshold distributions: This prior structure corresponds to an adaptation process
according to which participants only learn speaker-specific threshold distributions
during adaptation. We parameterized threshold Beta distributions P (θe) with their
mean µe and population parameter νe (Kruschke, 2015). Since the threshold and
therefore also the mean of the threshold distribution have to lie within the interval
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Range Step size MAP value

Variance for µ [0.025,0.2] 0.025 0.175
Scale for ν [0.5,3.5] 0.5 2.5
Variance for cost [0.1,1.5] 0.2 1.3

Table 4
Explored hyperparameter ranges for variance parameters, and inferred MAP values, which
were used in the adaptation simulations.

[0,1], we used a truncated normal distribution N[0,1], which we centered at the mean
value from the norming data. For the population parameters νe, which indicate how
peaked a threshold distribution is, we assumed that distributions can only become
more peaked when listeners are exposed to a speaker with very consistent language
use and therefore modeled the prior as an exponential distribution shifted to the
mean population parameter that we estimated from the norming data. We used a
delta distribution for the priors over all other parameters.

• Threshold distributions and costs: This prior structure corresponds to an adap-
tation process according to which participants learn both speaker-specific threshold
distributions and speaker preferences during adaptation. We used the log-normal dis-
tributions as priors over the cost parameters and the truncated normal and exponential
distributions as priors over the threshold distribution parameters, as described above.
This means that both the threshold distributions and the cost parameters could be
updated during the adaptation simulations.

Each of these prior structures corresponds to a different hypothesis about which expec-
tations listeners update during adaptation. For comparison, we also considered a baseline
in which none of the parameters are updated during adaptation (the fixed prior structure).
To adjudicate between these three hypotheses, we ran simulations of the adaptation process
for both (cautious speaker and confident speaker) conditions with different prior structures
and compared the models in terms of their likelihood of generating the experimental data.
During each simulation, we performed Bayesian inference to infer the posterior parameter
distribution after observing the 20 data points that participants observed in the exposure
phase (see Table 3 for an overview of the 20 utterances in the two conditions). We per-
formed inference using MCMC with a Metropolis-Hastings sampler. We used thinning of
10, discarded the first 2,000 burn-in samples and collected 10,000 samples from each of the
two chains.

The prior distributions over the different parameters that may be updated during
the adaptation simulations are all parameterized by two constants which govern their mean
and their variance. The first set of parameters (the mean of the log-normal and truncated
normal distributions; the location parameter of the exponential distributions) was given by
the estimates from fitting the model to the norming data. The second set of parameters
(the variance of the log-normal and truncated normal distributions; the scale parameter
of the exponential distributions) was treated as hyperparameters of the simulations. To
keep the model as simple as possible, we only used three hyperparameters in total: a
variance parameter for the cost for all expressions; a variance parameter for the mean of the



LISTENER ADAPTATION TO UNCERTAINTY EXPRESSIONS 28

Model R2 odds

fixed 0.746 10−1200

cost 0.770 10−448

threshold distributions 0.874 10−284

cost & threshold distributions 0.815 1
Table 5
Model evaluation results on data from Experiment 2a. R2 are computed between the mean
post-exposure ratings and the mean model predictions. odds are the posterior likelihood odds
of the models compared to the cost and threshold distributions model.

threshold distributions for all utterances; and a scale parameter for the prior over population
parameters for all utterances. We optimized these three parameters through a Bayesian
hyperparameter search on the adaptation data, which provided us with a distribution over
hyperparameter values. Considering that each simulation is computationally expensive, we
could only test a few hundred hyperparameter combinations, which are listed in Table 4.
We found that the resulting distributions were highly peaked and therefore, we used only
the maximum a posteriori estimates of the hyperparameters (also shown in Table 4) for the
model comparisons below.

5.2 Model comparisons

We compared model fits according two metrics. First, we considered the R2 value be-
tween participants’ average post-exposure ratings and the maximum a posteriori predictions
of the post-exposure model. Second, we computed the likelihood of the model generating
the post-exposure data. For the latter, we constructed a dataset Dobs of utterance-event
probability pairs by treating each post-exposure rating as a probability distribution and
sampling 10 utterances from it. We then computed the posterior likelihood odds between
Model 1 with posterior distribution over parameters P (Θ(1)

S ) and Model 2 with posterior
distribution P (Θ(2)

S ).

posterior likelihood odds =

∫ 1

0
P
(
Θ(1)
S

)
P
(
Dobs | Θ

(1)
S

)
dΘ(1)

S∫ 1

0
P
(
Θ(2)
S

)
P
(
Dobs | Θ

(2)
S

)
dΘ(2)

S

The posterior likelihood odds indicate how much more likely it is that the data was generated
by Model 1 than by Model 2. Since we are marginalizing over a distribution over parameter
values, this comparison of models will naturally favor simpler models. For a more complex
model with more parameters, the distribution over different parameter values will be more
dispersed and can contain more parameter configurations that lead to a lower likelihood of
the data.

Table 5 shows the R2 values between the the models and the experimental data
from Experiment 2a as well as the posterior likelihood odds. As the values in this table
show, the model in which the cost as well as the threshold distributions are updated during
adaptation is much more likely to generate the experimental data than the other two less
complex models. However, this is not entirely reflected in the R2 values between the mean
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Model R2 odds

fixed 0.662 10−1248

cost 0.802 10−458

threshold distributions 0.877 10−212

cost & threshold distributions 0.875 1
Table 6
Model evaluation results on data from Experiment 2b. R2 are computed between the mean
post-exposure ratings and the mean model predictions. odds are the posterior likelihood odds
of the models compared to the cost and threshold distributions model.

model predictions and the empirical means. Similarly to the posterior odds, the R2 values
suggest that the fixed model and the cost model make worse predictions than the other
two models. At the same time, the two metrics disagree on the ranking of the threshold
distributions and cost and threshold distributions models – the R2 values suggest that the
model according to which only the threshold distributions are updated during adaptation
predicts participants’ post-exposure behavior best.

To assess the stability of these results, we conducted another series of simulations to
predict the post-adaptation ratings from Experiment 2b. For these simulations, we used
identical prior structures and parameterizations as in the previous simulations, i.e., we did
not optimize any hyperparameters of the model. However, since participants saw additional
5 filler utterances during the exposure phase, we also exposed the model to 5 additional
utterances. The model evaluation results for these simulations are shown in Table 6. As
the likelihood odds in this table show, the model in which both the costs and the threshold
distributions can be updated is again much more likely to generate the experimental data
than the other two models. This replicates the findings from the previous simulations.
According to the R2 metric, the threshold distributions and cost and threshold distributions
models predict the data approximately equally well.

What do these modeling results tell us about the semantic/pragmatic adaptation
process? We assumed that each of these simulations correspond to an adaptation pro-
cess in which different types of expectations are updated. The modeling results strongly
corroborate the experimental results from Experiments 2a and 2b: the models according
to which no expectations are updated during adaptation (the fixed model) or according
to which only preferences are updated (the cost model) provide poor predictions for the
post-adaptation ratings. The results also clearly indicate that listeners update expectations
about the threshold distributions. Independent of the metric, the models according to which
listeners update threshold distributions were best at predicting post-adaptation behavior in
all simulations.

However, the conflict between the R2 metric and the log odds ratio leaves unclear
whether adaptation is a result of only updating expectations about threshold distributions,
or whether update on preferences is also necessary. In part, this inconsistency can most
likely be explained by the properties of the R2 metric. For one, unlike the posterior odds,
it does not take uncertainty of the model predictions into account but rather compares the
mean participant behavior to the mean model predictions. Considering that the model does
exhibit considerable uncertainty in its post-exposure rating predictions, it is not particularly
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Figure 11 . Post-adaptation model predictions from simulations for Experiment 2a and
experimental results. The solid lines shows the mean model predictions and the thin lines
around the mean show the distribution of model predictions.

surprising that the two metrics suggest different conclusions.12 Second, since the ratings
and the model predictions are probability distributions, the empirical and predicted ratings
for one utterance for a specific event probability are not independent of the ratings for other
utterances and therefore not all assumptions for using R2 are met. Considering these factors,
the posterior odds are to be trusted more than the R2 values. This suggests that there is
strong evidence that listeners update expectations about both threshold distributions and
preferences.

5.3 Model evaluation

Apart from quantitatively assessing the fit of the model, it is informative to visually
inspect the predictions of the model to verify that the model makes correct qualitative
predictions. Figure 11 shows the post-exposure predictions of the cost & threshold dis-
tributions model compared to the average participant ratings for the two conditions from
Experiment 2a.13 Qualitatively, the model captures several important patterns in the post-
adaptation behavior. The model correctly predicts that in the cautious speaker condition,
ratings for might are higher than ratings for probably when there is an objective proba-
bility of 0.6. For the confident speaker condition, the model correctly predicts the opposite
pattern. The model also predicts that in the cautious speaker condition, participants rate
might highly for a larger range of event probabilities than in the confident speaker con-
dition and the model predicts the reverse pattern for the probably ratings. Further, the
model predicts that high ratings for might and probably are not limited to the utterance-
event probability combinations that participants observed during the exposure phase. For
example, the model correctly predicts high ratings of might for low event probabilities in
the cautious speaker condition despite the fact that it never observed utterances for low

12See Gelman, Goodrich, Gabry, and Vehtari (2019) for a proposal of a Bayesian R2 value.
13We only discuss the simulations for Experiment 2a in this section. See Appendix E for the same plots

for the simulations for Experiment 2b.
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Figure 12 . Post-adaptation threshold distributions from the simulations for Experiment 2a.

event probabilities. Similarly, the model predicts high rating of probably for high event
probabilities in the confident speaker condition – a combination which was again not part
of the exposure trials of this condition.

Quantitatively, there are some differences between the model predictions and partici-
pant behavior. This is not surprising considering that the model predictions are a result of
simulations and, with the exception of the three variance parameters of the prior distribu-
tions, we did not fit any model parameters to the behavioral data. One difference is that
the model underpredicts the ratings of one of the filler utterances in both conditions: in the
cautious speaker condition, the model underpredicts ratings of probably; in the confident
speaker condition, it underpredicts ratings of might. One reason for this deviation could
be the relatively simple prior structure. For the priors, we made the assumption that all
model parameters are independent of each other and that the variance for the different
parameter types is the same for all utterances. However, it could be that listeners have
more structured prior beliefs such that priors over different parameters are correlated or
variances of prior distributions differ. For example, it could be that listeners expect the
thresholds for might and probably to be correlated such that higher thresholds for might are
correlated with higher thresholds for probably. Or it could be that listeners expect more
between-speaker variation for some expressions than for others. Considering that we only
have data from two experiments to test model predictions and therefore would likely overfit
to the data if we tried to fit more complex prior structures with more parameters, we leave
the investigation of the exact structure of listeners’ prior beliefs to future work.

The second noticeable deviation is that the model overpredicts the ratings of the
other utterance for event probabilities of 1. This prediction is primarily driven by high
values for the predicted ratings of bare. However, we argue that the model predictions
in this case are reasonable, and that the lower participant ratings are likely an artifact of
the experimental task. After completing the experiment, several participants indicated in a
feedback form that they were confused by the lack of an option to rate the bare utterance,
which they had heard during the exposure phase. In light of this confusion, almost all
individual participants chose among two strategies when there was an event probability of
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Figure 13 . Post-adaptation log cost values from simulations for Experiment 2a. Note that
the cost of might and probably in the norming data model was 1 and therefore the log
cost for these utterances is 0.

1: they either provided a rating of 100 for other or they provided a rating of 100 for
probably, which on average leads to the ratings shown in Figure 11.

With the exception of these two deviations, the model makes not only correct quali-
tative, but also accurate quantitative predictions for the post-exposure ratings.

Lastly, we can also inspect how the model arrived at its predictions by looking at the
inferred model parameters. Figures 12 and 13 show the inferred post-exposure threshold
distributions and costs for the two conditions as well as the distributions inferred from
the norming data. Figure 12 shows that the threshold distribution for probably changed
considerably depending on the exposure phase: in the cautious speaker condition, its mean
shifted to a higher value than inferred from the norming data; in the confident speaker
condition the mean shifted to a lower value. To a lesser extent, we observe similar shifts in
the mean of the threshold distributions formight. We further observe that for all expressions,
the variance of the threshold distributions decreased as a result of adaptation. In the case
of the expressions that were part of the exposure phase, this is expected, since the exposure
speaker used these expressions very consistently; in the case of the other expressions, this
decrease in variance is a result of the exponential prior over the population parameter,
which biased the model towards lower variance. For some of the thresholds, this resulted
in differently shaped distributions. However, note that the area under the curve of all
threshold distributions except for probably is still very similar to the area under the curve
of the norming data threshold distributions. And overall, except for the distributions for
might and probably, the post-exposure threshold distributions are almost identical in both
conditions. This suggests that the post-adaptation expectations are in part a result of
updated threshold distributions for might and probably.

Figure 13 shows that the costs of the might, probably and bare utterances, i.e.,
the three utterances that participants observed during the exposure phase, all decreased
while the costs of the other four utterances increased compared to the costs inferred from
the norming data. Further, the post-exposure cost of might is lower than the cost of prob-
ably in the cautious speaker condition and the opposite relation between these costs holds
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in the confident speaker condition. These cost differences are expected considering that the
number of exposure trials across the two conditions differed (in the cautious speaker con-
dition in Experiment 2a there were more trials with might; in confident speaker condition
more trials with probably). More surprisingly, this pattern persisted in the simulations for
Experiment 2b in which the exposures of these two utterances were balanced across condi-
tions (see Appendix E for cost plot for balanced simulations). These persistent differences
suggest that the post-adaptation expectations are in part also a result of updated beliefs
about preferences of might and probably.

5.4 Interim summary

In the previous two sections, we presented the results from two experiments, which
provide strong evidence for listeners updating expectations about a speaker’s use of uncer-
tainty expressions after brief exposure to that speaker.

We further presented a computational adaptation model which models the adaptation
process as an instance of Bayesian belief updating. We used different implementations of
that model to investigate which kind of expectations listeners update during adaptation.
We found strong evidence that listeners update beliefs about the threshold distributions
and we found some evidence that listeners also update beliefs about speaker preferences.

6 Experiment 3: Effect of adaptation on interpretation

Up to this point, we focused on listeners’ expectations about a speaker’s use of un-
certainty expressions. As we discussed in the introduction, we expect updated expectations
to also have an effect on the interpretation of uncertainty expressions. This effect is also
predicted by RSA models, which assume that a pragmatic listener L1 tries to infer the state
of the world (in our case, the event probability φ) by reasoning about their prior beliefs
about the world state and their expectations about a speaker’s language use (in our case,
the expected pragmatic speaker ES1) via Bayes’ rule:

L1(φ | ue) ∝ P (φ)ES1(ue | φ).

According to such a model of interpretation, the shifts in expectations that we ob-
served in the previous experiment should also lead to a shift in interpretations. If we assume
a uniform prior over event probabilities,14 then the model predicts that listeners who were
exposed to a cautious speaker should infer higher event probabilities when hearing might
or probably than listeners who were exposed to a confident speaker. Figure 14 shows the
distribution over event probabilities after hearing three different utterances as predicted
by L1 parameterized by the inferred parameters from our adaptation simulations in the
previous section. As these plots show, in the cautious speaker condition, the distribution
over event probabilities after hearing might and probably is shifted towards higher values as
compared to the distributions in the confident speaker condition.

14To reiterate, this assumption was motivated by the study reported in Footnote 8, which suggested that
participants on average assign equal probability to each gumball machine a priori.
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Figure 14 . Post-adaptation interpretation distributions for the utterances bare, might,
and probably as predicted by the pragmatic listener L1.

In this experiment, we tested whether this prediction is correct and whether listeners’
change in expectations transfers to a change in interpretations. The procedure, materials
and analyses were pre-registered at https://osf.io/ghnc3.15

6.1 Participants

We recruited a total of 80 participants (40 per condition) on Amazon Mechanical Turk.
We required participants to have a US-based IP address and a minimal approval rating of
95%. Participants were paid $1.5 which amounted to an hourly wage of approximately $15.
None of the participants had participated in any of the previous experiments.

6.2 Materials and Procedure

Participants completed a set of exposure trials followed by a set of test trials. The
exposure trials were identical to the exposure trials in Experiment 2b. The test trials
probed participants’ interpretations of the utterances might, probably and bare. On
each test trial, participants listened to a recording of the speaker from the exposure phase
producing might, probably and bare and then participants were asked to rate for 9
gumball machines with the same proportions of blue and orange gumballs as in the previous
experiments how likely they thought it was that the speaker saw each of these gumball
machines by distributing coins. Participants distributed 10 coins per trial and completed
6 trials in total – one for each expression-color pair. The exposure phase again contained
6 attention check as in the previous experiment. However, given the low attention check
performance in the previous experiments, we modified the attention checks. Instead of
asking participants whether they saw an X on the previous trial, we asked participants to
choose the gumball machine that they had seen on the previous trial among two machines
displayed in random order.

15This experiment is a modified version of a previous experiment, which qualitatively yielded the same
results but also seemed to confuse many participants. See Appendix F for a discussion of the original
experiment.



LISTENER ADAPTATION TO UNCERTAINTY EXPRESSIONS 35

bare might probably

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

event probabilty

m
ea

n 
no

rm
al

iz
ed

 r
at

in
g

cautious speaker confident speaker

Figure 15 . Aggregated post-exposure ratings from Experiment 3. Error bars correspond to
bootstrapped 95%-confidence intervals.

6.3 Exclusions

We excluded participants who failed more than 2 attention checks, which led to 1 ex-
clusion in the cautious speaker condition and 1 exclusion in the confident speaker condition.

6.4 Analysis and Predictions

If participants update their expectations of a specific speaker’s use of uncertainty
expressions, we expect that listeners interpret a more confident speaker’s utterance to com-
municate a lower event probability than a more cautious speaker’s utterance. We tested this
prediction by treating participant’s distributions of coins of gumball machines as a prob-
ability distribution over gumball proportions (and consequently event probabilities). For
each utterance, we normalized participants’ coin distributions such that they summed up to
1, so that we could interpret the normalized scores as a categorical probability distribution
over gumball machines given an utterance. We computed the expected value of target color
gumballs from these probability distributions and compared these expected values across
the two conditions with a t-test. We predicted that the expected values of might and
probably would be larger in the cautious speaker condition than in the confident speaker
condition.

6.5 Results and Discussion

Figure 15 shows the aggregated and normalized ratings for the two conditions. As
predicted, participants provided higher ratings for gumballs with higher target color per-
centages after hearing might and probably in the cautious speaker condition than in the
cautious speaker condition. This also led to a significantly higher expected value for might
(t(76) = 5.84, p < 0.001) and probably (t(76) = 3.92, p < 0.001) in the cautious speaker
condition as compared to the confident speaker condition.

These results suggest that listeners not only update their expectations about a
speaker’s use of uncertainty expressions, but also use those updated expectations in in-
terpretation.
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Model R2 odds

fixed 0.662 10−442

cost 0.885 10−217

threshold distributions 0.888 10−116

cost & threshold distributions 0.927 1
Table 7
Model evaluation results on data from Experiment 3. R2 are computed between the mean
post-exposure ratings and the mean model predictions. odds are the posterior likelihood odds
of the models compared to the cost and threshold distributions model.

6.6 Model comparison

We return again to our main research question regarding which expectations are up-
dated during adaptation. The production expectation experiments and model simulations
provided strong evidence for listeners updating their beliefs about the threshold distribu-
tions. On the other hand, the two evaluation metrics provided conflicting results regard-
ing whether or not beliefs about speaker preferences are also updated. We therefore also
compared the pragmatic listener L1 predictions from the simulations with different prior
structures to the post-exposure ratings in Experiment 3. To this end, we computed the
predictions of the L1 model from the posterior distributions over model parameters that
we obtained through the simulations in the previous section. Table 7 shows the model fit
for the different types of simulations. As this table shows, the model according to which
both threshold distributions and costs are updated provides the best fit according to both
metrics. Considering that the posterior likelihood odds consistently favored this model in
all three model comparisons, we take these results together as strong evidence that listeners
update their expectations about threshold distributions and costs.

6.7 Model evaluation

Figure 16 superimposes the model predictions and the experimental data. As these
plots show, the model accurately captures most of the qualitative and quantitative patterns.
First, the model makes both qualitatively and quantitatively accurate predictions for the
interpretation of the bare utterance in both conditions. Second, the model makes the
crucial qualitative prediction that participants expect the speaker to communicate lower
event probabilities in the confident speaker condition than in the cautious speaker condition,
which we also observed in Experiment 3. Further, even though we used the parameters that
we obtained in the simulations from the previous section and did not fit any parameters
to the data from Experiment 3, the model also provides good quantitative predictions of
participant’s interpretation of might and probably, which provides further support for the
hypothesis that semantic/pragmatic adaptation is an instance of Bayesian belief updating.

The only main deviation between the model predictions and the experimental data
lies in the interpretation of might in the cautious speaker condition. For this interpreta-
tion, the model predicts a less peaked distribution than the empirical distribution. One
explanation for this deviation could be that participants are considering alternative uncer-
tainty expressions (e.g., very unlikely) that we did not include in the model. However, since
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Figure 16 . Predictions of threshold distributions and costs model and data from Experi-
ment 3. The thin lines around the mean show the distribution of model predictions.

fine-tuning the set of alternative utterances would not change the qualitative predictions of
the model and would not provide additional theoretical insights, we leave a more detailed
exploration of this issue to future work.

7 General Discussion

While adaptation in language is a widely attested phenomenon, the exact nature of
the representations that are updated during semantic/pragmatic adaptation has remained
largely a mystery. In this paper we attempted to rectify this situation by doing three things:
first, to investigate whether semantic/pragmatic adaptation occurs at all in a novel domain,
that of uncertainty expressions; second, to investigate the nature of the representations that
are updated during adaptation via the comparison of computational models of adaptation
formulated within a Bayesian pragmatic modeling framework; and third, to test a novel
prediction resulting from the application of this model to interpretation.

In two production expectation experiments (Experiments 2a and 2b), we found that
listeners adapt to speakers who vary in their use of uncertainty expressions. This result
confirms that the findings by Yildirim et al. (2016) also extend to the class of uncertainty
expressions. In Experiment 3, we further found a novel effect of adaptation on utterance
interpretation.

In a series of model comparisons, we found strong evidence for listeners updating their
beliefs about both the speaker’s lexicon as well as the speaker’s preferences, which suggests
that semantic/pragmatic adaptation is a result of updating both of these types of expecta-
tions. We further found that modeling the adaptation process as an instance of Bayesian
belief updating explains participants’ post-adaptation behavior in both the production ex-
pectation (Experiments 2a and 2b) and comprehension (Experiment 3) experiments.

We next discuss the implications of these results for other accounts of adaptation and
for semantic theories of uncertainty expressions, as well as methodological implications. We
then turn to limitations of the current results and account, as well as to fruitful future
research avenues this work opens.
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7.1 Implications for and relation to other accounts of adaptation

The model in this paper is formulated at the computational level (Anderson, 1990;
Marr, 1982) and is therefore directly only comparable to other computational models. How-
ever, we can still assess the compatibility of our findings with mechanistic accounts. We
first discuss the relation to existing computational models of adaptation and then discuss
what the results tell us about existing mechanistic accounts of adaptation.

The model presented above follows several other computational models of linguistic
adaptation that are based on Bayesian belief updating, including models of phonetic adap-
tation (Kleinschmidt & Jaeger, 2015), syntactic adaptation (Kleinschmidt et al., 2012),
adaptation in the interpretation of prosodic cues (Roettger & Franke, 2019), and adap-
tation to variable use of the quantifiers some and many (Qing, 2014). Considering that
these models that are all based on the same belief updating procedures can explain adap-
tation behavior from a range of linguistic domains, it is possible that linguistic adaptation
is a result of cognitive processes that operate in a similar fashion at all levels of linguistic
representation.

At the semantic and pragmatic level, Hawkins et al. (2017) proposed a model very
similar to ours to explain the formation of conceptual pacts (Clark & Wilkes-Gibbs, 1986).
Their model is based on the assumption that speakers and listeners have uncertainty about
the lexicon (see also Bergen, Levy, & Goodman, 2016) and that in interaction, speakers and
listeners update their beliefs about the lexicon akin the updating of threshold distributions
in our model, which provides further evidence that belief updating plays an important role
in interactive language processing.

In the space of mechanistic accounts, Pickering and Garrod (2004) argued that a
lot of partner-specific linguistic behavior can be explained in terms of priming, i.e., the
automatic activation of linguistic representations when a speaker produces an utterance or a
listener hears an utterance. Their account has the appeal of explaining why partner-specific
language use often appears to happen automatically and effortlessly. But without additional
stipulations, their account is not compatible with the results from our experiments. In
particular, such a priming account predicts that only the number of exposures should have
an effect on language: with repeated exposure, the activation of the representations of lexical
items like might and probably should increase, and therefore participants should be more
likely to expect the speaker to produce these utterances. However, in Experiment 2b, we
found evidence against such an account: in this experiment, participants in both conditions
were exposed to the same number of each utterance, so according to a priming account, we
should not find a difference between speaker bias conditions. Yet we did. In a more recent
proposal, Pickering and Garrod (2013) agued that at least sometimes listeners perform
prediction-by-association when processing an utterance, that is, listeners make predictions
about what the speaker would say based on the context and their experience with the
speaker. This appears to be compatible with our computational adaptation model but more
details need to be worked out about how such predictions operate at the implementational
level (Marr, 1982).

In a second line of work, Horton and Gerrig (2005, 2016) argued that partner-specific
language use can be explained by an episodic memory account (Goldinger, 1998; Johnson,
1997; Pierrehumbert, 2001). According to this account, individual linguistic events are
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encoded together with speaker information and the world state in memory, which results in
speaker-specific linguistic representations. This account is compatible with our findings, if
we assume that individual utterance-world state pairs are stored in memory together with
the speaker’s identity, and that some additional inference mechanism gives rise to the more
complex pragmatic behavior that we observed in our experiments.

7.2 Implications for the semantics of uncertainty expressions

Our results also have implications for semantic theories of uncertainty expressions.
The finding that listeners rapidly update their beliefs about semantic thresholds of uncer-
tainty expressions suggests that the semantics of these expressions is highly dynamic and
context-sensitive. This is broadly compatible with recent theoretical accounts of probability
operators (a subset of uncertainty expressions; e.g., Lassiter, 2017; Lassiter & Goodman,
2015; Yalcin, 2010), which state that the meanings of probability operators are highly dy-
namic and largely determined by the context. Our results suggest that the meaning of
uncertainty expressions is even more dynamic than predicted by some of these accounts.
First, we show that this dynamicity extends to a broader set of uncertainty expressions than
is considered by some of these accounts (e.g., might; see also Lassiter, 2017, for arguments
for all uncertainty expressions having a threshold semantics). Second, while these accounts
generally assume that the main source of variability in interpretation is the probability of
the event embedded under the uncertainty expressions, we find that knowledge of speaker
identity also importantly contributes variability.

Dynamic and context-sensitive semantics have also been proposed for many other
types of expressions. For example, Clark and Gerrig (1983) argued that speakers and lis-
teners are able to compute novel senses of nouns and verbs on the fly. Similarly, in the
domain of gradable adjectives such as tall, Kennedy (2007) and many others have argued
that the interpretation of these adjectives crucially depends on contextual parameters. Con-
sidering the prevalence of dynamic meanings for so many other types of expression, it is
therefore not surprising that the interpretation of uncertainty expressions also appears to
be highly context-sensitive.

7.3 Methodological implications

Our results also have implications for conducting experiments. First, the finding that
listeners adapt to the statistics of their environment within a short experiment suggests that
experimenters should be cognizant of potential adaptation effects when probing production
expectations or interpretations of uncertainty expressions (see also Jaeger, 2010).

Further, the results of Experiment 1, and in particular, the finding that participants’
expectations about the use of utterances in the experiment strongly depended on the al-
ternative utterances that we provided, highlights the need to be cautious about drawing
general conclusions about expectations of use from single experiments. For example, had
we only considered the results from the bare-might condition (see Figure 3), we might have
concluded that “might” is an expected expression to communicate an event probability of
75%, whereas if we had only considered the results from the might-probably condition we
might have instead concluded that it is not an expected expression to communicate an event
probability of 75%. This is where explicit modeling of the sort we have engaged in here is
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hugely helpful: formulating a concrete linking function which models the effects of alterna-
tives allows for inferring the latent meanings of utterances by combining data from different
experiments (see also Franke, 2014; Peloquin & Frank, 2016, for similar approaches).

7.4 Limitations and future directions

One potential limitation of the present research is that the paradigm is not fully
interactive and that it does not involve any non-linguistic task, since participants only
listened to pre-recorded utterances during the exposure phase. While this is clearly different
from everyday dialog, it mirrors other everyday situations such as listening to someone talk
on the radio or on TV. Further, since we only instructed participants to passively observe
the interactions and the observations were not relevant for any non-linguistic task, we would
expect that participants paid even more attention to the speaker’s behavior if it had been
relevant for a task. Investigating semantic/pragmatic adaptation in a less scripted setting
is an important area for future research.

Throughout this paper, we made the assumption that listeners form speaker-specific
production expectations. However, since all our experiments had a between-subjects design,
it could be that participants were only adapting to the experimental situation, independent
of the speaker. This seems unlikely given the results reported by Yildirim et al. (2016), who
found that participants formed speaker-specific production expectations after being exposed
to multiple speakers whose use of quantifiers differed. Moreover, (Schuster & Degen, 2019)
have provided evidence of speaker-specific adaptation to uncertainty expressions. However,
exactly which aspects of a situation (e.g., the speaker, the topic of conversation, the visual
context, etc.) listeners adapt to is an issue that merits further investigation.

One advantage of formalizing a theory as a computational model is that the model
makes concrete predictions to test in future experiments. For example, the proposed model
is able to make quantitative predictions about the relation between the number of exposure
trials and the size of the adaptation effect. Qualitatively, the model predicts that more
exposure should lead to more adaptation, for which some evidence is reported by Schuster
and Degen (2019). However, a systematic investigation of whether the model makes the
correct quantitative predictions remains to be conducted.

Further, the presented adaptation model is built around the assumption that the
utility of an utterance is exclusively determined by the informativeness and the cost of the
utterance. However, it has been observed that other speaker goals such as being polite
or convincing could also factor into the interpretation of uncertainty expressions (see e.g,
Holtgraves & Perdew, 2016; Juanchich & Sirota, 2013; Pighin & Bonnefon, 2011). It could
therefore be that, for example, listeners “explain away” the behavior of a “confident” speaker
if the context suggests that the speaker has an incentive to be encouraging or has additional
goals besides being informative (see also Yoon, Tessler, Goodman, & Frank, 2016, 2017).
Investigating whether listeners draw such complex inferences could provide insight about
which kind of potential speaker goals enter into listeners’ pragmatic reasoning process.

7.5 Conclusion

We began with the puzzle of how to reconcile the assumption of stable utterance alter-
natives required for pragmatic reasoning with the rampant variability in speakers’ language
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use. The work reported here, building on much previous work on adaptation, suggests that
this apparent tension is easily resolved if listeners form speaker-specific utterance expecta-
tions that they can recruit when encountering that same speaker again.

In a series of web-based experiments, we found that after exposure to a specific
speaker, listeners rapidly update their expectations about which uncertainty expressions
that speaker is likely to produce to describe varying event probabilities, and that these
updated expectations also transferred to updated interpretations. We provided a formal
account of semantic/pragmatic adaptation and modeled this behavior using a Bayesian
cognitive model which assumes that (listeners reason about) speakers (who) efficiently trade
off utterance informativeness and cost. Through a series of simulations we found strong
evidence for semantic/pragmatic adaptation being a result of updated beliefs about a specific
speaker’s meaning of uncertainty expressions as well as the speaker’s utterance preferences.
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Appendix

A Effect of color in Experiment 1

As mentioned in a footnote, we ran the norming studies in three batches using three
slightly different procedures across conditions. We originally ran condition 0 (bare-might)
as a pilot condition. In the results, we noted that participants did not differ in their ratings
depending on whether the girl asked for a blue or an orange gumball (R2(27) = 0.997
between mean ratings for blue and orange trials). To lower the number of trials, we therefore
asked each participant to provide ratings for only one of the two colors (randomized across
participants) for the next batch of conditions (conditions 1-14). We found that in some
conditions, this led to small differences in ratings between participants who always rated
utterances with blue and participants who always rated utterances with orange (R2(27)
between 0.864 and 0.984). We hypothesize that this is a result of participants paying less
attention if they were asked to do exactly the same task over and over again (in condition
0, the color and the associated utterances could change across trials). In order to verify the
stability of our results, we replicated one of the conditions, condition 5 (might-probably), and
had participants provide two ratings for each color and gumball proportion. We found that
despite the lower correlation between average ratings for utterances with blue and utterances
with orange in the original run (R2(27) = 0.929), there was a very high correlation between
the average ratings independent of the color of the original study and the average ratings
of the replication (R2(27) = 0.975), which suggests that the average ratings largely do not
depend on whether we ask participants to provide ratings for both colors or just one color.
Nevertheless, we used the modified procedure in which we asked participants to provide 2
ratings for each color and gumball proportion for the last batch of conditions (conditions
15-20). In all conditions in which we asked people to provide ratings for utterances with
both colors, the correlation between average ratings for utterances with blue and utterances
with orange was almost perfect (R2(27) > 0.988).
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B Additional results of Eperiment 1.

Figures 17 and Figures 18 show the results from all conditions in Experiment 1.
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Figure 17 . Results of Experiment 1 – Part 1. Error bars correspond to bootstrapped
95%-confidence intervals.
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Figure 18 . Results of Experiment 1 – Part 2. Error bars correspond to bootstrapped
95%-confidence intervals.

C Model implementation details

The model presented above poses some challenges for performing Bayesian data anal-
ysis with considerable amounts of data. Concretely, the integral over threshold distributions
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in the expected pragmatic speaker model ES1 (repeated here) makes it hard to compute
the distribution ES1 given a set of parameters Θ.

ES1 (ue | φ) =
∫
P (c)

∫ 1

0
P (θ)S1 (ue | φ, θ, c) dθ dc

The reason for this is two-fold: First, there is no analytical solution for this inte-
gral, and second, since S1 depends on thresholds for all uncertainty expressions P (Θ) is a
multidimensional distribution which cannot be easily approximated.

We solve this issue by introducing two approximations. First, we discretize the thresh-
old distributions by distributing the probability mass of the Beta distributions across 20
equally-wide bins, resulting in a discrete probability distribution Pd(θ) (see Tessler and
Goodman, 2019 for a similar approach). Since all event probabilities for which participants
had to provide ratings in the experiments were multiples of 5%, we do not lose any accuracy
and gain the advantage that we can now sum over a discrete probability space:16

ES1 (ue | φ) =
∑
θ

Pd(θ)S1 (ue | φ, θ, c)

While this approximation can in theory be computed exactly, its computation remains
intractable even for the small number of utterances that we included in our model. Note
that the discrete version of the vector of thresholds θ has one dimension with 20 possible
values for each utterance, which implies there are 20|U | possible assignments of θ. This
means for estimating parameters for a model with 7 utterances, we would have to sum
over 207 = 1.28× 109 parameterizations of the pragmatic speaker model S1 to compute the
likelihood for one sample of parameters in the BDA.

We solve this problem through another approximation, which exploits the fact that
S1(ue | φ, θ, c) only depends on the thresholds for uncertainty expressions other than e for
the normalization term. We approximate the normalization term by marginalizing over θ′e
and thus making S′1 independent of all thresholds except θe:

S̃1(ue | φ, θe, c) = exp U(φ, ue, θe, c)
exp U(φ, ue, θe, c) +

∑
u′

e 6=ue

∑
θe′ Pd(θe′) exp U(φ, ue′ , θe′ , c) ,

where U(φ, ue, θe, c) = logL0(φ | ue, θe)− c(u) is the speaker utility as defined in the main
text.

This approximation allows us to define the following approximation of ES1, which is
tractable since we only have to sum over all values of one threshold instead of all combina-
tions of thresholds:

ẼS1(ue | φ) ∝
∑
θe

Pd(θe)S̃1 (ue | φ, θe, c)

This approximation leads to identical results as ES1 if each threshold distributions
assigns all probability mass to one value, i.e., if we have point estimates for thresholds. To

16In our data analysis procedure, we assumed that the distribution over cost functions, P (c), is a delta
distribution which assigns all probability mass to the condition-specific cost function c(u,C ) parameterized
by the cost parameter γ. Since this implies that P (c) is zero for all other cost functions, we can omit the
integral and replace c with the condition-specific cost function, which we implicitly did here.
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Figure 19 . Predictions of exact and approximate expected pragmatic speaker model for dif-
ferent combinations of thresholds. The leftmost panels (uniform) shows predictions of both
models if both utterances have uniform threshold distributions, i.e., threshold distributions
with very high variance. The other panels show model predictions under the assumption
that the utterances have the threshold distributions that we inferred in Section 3.

assess how much ES1 and its approximation, ẼS1 deviate when the threshold distributions
have non-zero variance, we performed several simulations, with different threshold distribu-
tions. For these simulations, we assume that there are only two possible utterances, which
makes the computation of ES1 tractable.

Figure 19 shows the results of these simulations. As these plots show, the approximate
model ẼS1 is a very close approximation of the expected pragmatic speaker model ES1,
which suggests that this approximation should only minimally affect our modeling results.

The model is implemented in Python using the scikit-learn (Pedregosa et al., 2011)
and numpy (van der Walt, Colbert, & Varoquaux, 2011) libraries.
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D Additional model predictions

Figures 20 and Figures 21 show the model predictions and the results from all condi-
tions in Experiment 1.
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Figure 20 . Model predictions and results of Experiment 1 – Part 1. Error bars correspond to
95% high density intervals (model predictions) and bootstrapped 95%-confidence intervals
(observed results).
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Figure 21 . Model predictions and results of Experiment 1 – Part 2. Error bars correspond to
95% high density intervals (model predictions) and bootstrapped 95%-confidence intervals
(observed results).

E Model simulations for Experiment 2b

Figures 22, 23, and 24 show the posterior predictions of the model simulations for
Experiment 2b, the post-adaptation threshold distributions, and the post-adaptation costs,
respectively.
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Figure 22 . Post-adaptation model predictions from simulations for Experiment 2b and
experimental results. The solid lines shows the mean model predictions and the thin lines
around the mean show the distribution of model predictions.
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Figure 23 . Post-adaptation threshold distributions from the simulations for Experiment 2b.
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Figure 24 . Post-adaptation log cost values from simulations for Experiment 2b. Note that
the cost of might and probably in the norming data model was 1 and therefore the log
cost for these utterances is 0.
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F Original interpretation experiment

As we mentioned in the main text, we originally ran a slightly different version of the
comprehension experiment in which participants used sliders to rate which gumball machine
they thought the speaker was describing. While the results were qualitatitvely the same
as in the experiment reported in the main body of the paper, the use of sliders seemed to
confuse some participants (see details below) and therefore we changed the procedure such
that participants provided ratings by distributing coins. For the sake of completeness, we
report the procedure and the results of the original experiment here.

Participants. We recruited a total of 80 participants (40 per condition) on Amazon
Mechanical Turk. We required participants to have a US-based IP address and a minimal
approval rating of 95%. Participants were paid $2 which amounted to an hourly wage of
approximately $10–$12. None of the participants had participated in any of the previous
experiments.

Materials and Procedure. The exposure phase was identical as in the other adap-
tation experiments: participants were either exposed to a cautious speaker or a confident
speaker. Six of the exposure trials included attention checks in which participants had to
indicate whether they saw a grey X on the previous trial or not.

Similar to Experiment 3, the test trials probed participants’ interpretations of the
utterances might, probably, and bare. On test trials, participants listened to a record-
ing of the speaker they encountered during the exposure phase and then rated how likely
they thought it was that the speaker saw different gumball machines. On each trial, like
in Experiment 3, participants provided ratings for 9 gumball machines. However, unlike
in Experiment 3, participants indicated their ratings by adjusting 9 sliders. Participants
completed 6 test trials in total – one for each expression-color pair.

Exclusions. We excluded participants who failed more than 2 out of 6 attention
checks, which led to 2 exclusions in the cautious speaker condition and 1 exclusion in the
confident speaker condition.

Analysis and Predictions. As for Experiment 3, we expected that listeners inter-
pret a more confident speaker’s utterance to communicate a lower event probability than a
more cautious speaker’s utterance. We measured the interpretation of utterances by normal-
izing the ratings across the 9 gumball machines so that they sum to 1 and then computing
the expected value for the proportion of blue and orange gumballs. We predicted that the
expected values of target color gumball proportions after hearing might and probably
were going to be larger in the cautious speaker condition than in the confident speaker
condition.

Results and Discussion. Figure 25 shows the aggregated and normalized rat-
ings for the two conditions. As predicted, participants provided higher ratings for gum-
ball machines with higher target color percentages after hearing might and probably in
the cautious speaker condition than in the cautious speaker condition. This also led to
a significantly higher expected value for might (t(75) = 3.05, p < 0.01) and probably
(t(75) = 3.08, p < 0.01) in the cautious speaker condition as compared to the confident
speaker condition.

This means that qualitatively, the results are the same as in Experiment 3. However,
since participants had the option to assign high ratings to all gumball machines (they could
assign a maximum rating to each gumball machine if they wanted to), we noticed that
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Figure 25 . Aggregated post-exposure ratings from the original interpretation experiment.

many participants assigned very high ratings to most gumball machines and therefore did
not indicate their interpretation of the utterance. Further, it seemed that some participants
understood the instructions as rating the likelihood of getting a target color gumball and
provided ratings proportional to the target color gumball proportion independent of the
utterance. For these reasons, we revised the original paradigm as described in the main
text and asked participants to indicate their interpretation using a limited set of coins,
which appeared to be less confusing for participants.


