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Abstract

Pragmatic inferences often subtly depend on
the presence or absence of linguistic features.
For example, the presence of a partitive con-
struction (of the) increases the strength of a
so-called scalar inference: listeners perceive
the inference that Chris did not eat all of the
cookies to be stronger after hearing “Chris ate
some of the cookies” than after hearing the
same utterance without a partitive, “Chris ate
some cookies”. In this work, we explore to
what extent neural network sentence encoders
can learn to predict the strength of scalar infer-
ences. We first show that an LSTM-based sen-
tence encoder trained on an English dataset of
human inference strength ratings is able to pre-
dict ratings with high accuracy (r = 0.78). We
then probe the model’s behavior using man-
ually constructed minimal sentence pairs and
corpus data. We find that the model inferred
previously established associations between
linguistic features and inference strength, sug-
gesting that the model learns to use linguistic
features to predict pragmatic inferences.

1 Introduction

An important property of human communication
is that listeners can infer information beyond the
literal meaning of an utterance. One well-studied
type of inference is scalar inference (Grice, 1975;
Horn, 1984), whereby a listener who hears an utter-
ance with a scalar item like some infers the negation
of a stronger alternative with all:

(1) a. Chris ate some of the cookies.
b.  Chris ate some, but not all, of the cookies.

Early accounts of scalar inferences (e.g., Gazdar
1979; Horn 1984; Levinson 2000) considered them
to arise by default unless explicitly contradicted in
context. However, in a recent corpus study, Degen
(2015) showed that there is much more variability
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in scalar inferences from some to not all than previ-
ously assumed. Degen (2015) further showed that
this variability is not random and that several lexi-
cal, syntactic, and semantic/pragmatic features of
context explain much of the variance in inference
strength.1

Recent Bayesian game-theoretic models of prag-
matic reasoning (Goodman and Frank, 2016;
Franke and Jäger, 2016) are able to integrate
speaker expectations with world knowledge to pre-
dict listeners’ pragmatic inferences in many cases
(e.g., Goodman and Stuhlmüller 2013; Degen et al.
2015). However, to compute speaker expectations,
these models require manual specification of fea-
tures as well as specification of a finite set of pos-
sible utterances. Further, inference becomes in-
tractable when scaling up beyond toy domains to
make predictions for arbitrary utterances.2 Neu-
ral network (NN) models, on the other hand, do
not suffer from these limitations: they are capa-
ble of making predictions for arbitrary utterances
and do not require manual specification of features.
Unlike Bayesian game-theoretic models, however,
NN models have no explicit pragmatic reasoning
mechanisms.

In this work, we investigate to what extent NN
models can learn to predict subtle differences in
scalar inferences and to what extent these models
infer associations between linguistic features and

1See Section 2 for the operationalization of inference
strength that we use throughout this paper and for a description
of these features.

2Recent models of generating pragmatic image descrip-
tions (Andreas and Klein, 2016; Cohn-Gordon et al., 2018)
and color descriptions (Monroe et al., 2017) have overcome
this issue by approximating the distributions of utterances
given a set of potential referents. However, these models
require a finite set of world states (e.g., several referents to
choose from) and a corresponding generative model of ut-
terances (e.g., an image captioning model) and are therefore
also limited to scenarios with pre-specified world states and a
corresponding generative model.



inference strength. In this enterprise we follow
the recent successes of NN models in predicting
a range of linguistic phenomena such as long dis-
tance syntactic dependencies (e.g., Elman 1990;
Linzen et al. 2016; Gulordava et al. 2018; Futrell
et al. 2019; Wilcox et al. 2019), semantic entail-
ments (e.g., Bowman et al. 2015; Conneau et al.
2018), acceptability judgements (Warstadt et al.,
2018), factuality (Rudinger et al., 2018), nega-
tive polarity item licensing environments (Warstadt
et al., 2019), and, to some extent, speaker commit-
ment (Jiang and de Marneffe, 2019a). In particular,
we ask:

1. How well can a neural network sentence
encoder learn to predict human inference
strength judgments for utterances with some?

2. To what extent does such a model capture the
qualitative effects of hand-mined contextual
features previously identified as influencing
inference strength?

To address the first question, we compare the per-
formance of several NN models that differ in the un-
derlying word embedding model (GloVe, ELMo, or
BERT). To address the second question, we probe
the best model’s behavior through an analysis of
predictions on manually constructed minimal sen-
tence pairs, a regression analysis, and an analysis
of attention weights. We find that the best model is
able to predict inference strength ratings on a held-
out test set with high accuracy (r = 0.78). The
three analyses consistently suggest that the model
learned associations between inference strength
and linguistic features established by previous work
(Degen, 2015).

We release data and code at https://github.
com/yuxingch/Implicature-Strength-Some.

2 The dataset

We use the annotated dataset collected by Degen
(2015), a dataset of the utterances from the Switch-
board corpus of telephone dialogues (Godfrey et al.,
1992) with a noun phrase (NP) with some. The
dataset consists of 1,362 unique utterances. For
each example with a some-NP, Degen (2015) col-
lected inference strength ratings from at least 10
participants recruited on Amazon’s Mechanical
Turk. Participants saw both the target utterance
and ten utterances from the preceding discourse
context. They then rated the similarity between
the original utterance like (2a) and an utterance in

which some was replaced with some, but not all
like (2b), on a 7-point Likert scale with endpoints
labeled “very different meaning” (1) and “same
meaning” (7). Low similarity ratings thus indicate
low inference strength, and high similarity ratings
indicate high inference strength.

(2) a. I like – I like to read some of the philosophy
stuff.

b. I like – I like to read some, but not all, of the
philosophy stuff.

Using this corpus, Degen (2015) found that sev-
eral linguistic and contextual factors influenced
inference strength ratings, including the partitive
form of, subjecthood, the previous mention of the
NP referent, determiner strength, and modification
of the head noun, which we describe in turn.
Partitive: (3a-b) are example utterances from the
corpus with and without partitive some-NPs, re-
spectively. Values in parentheses indicate the mean
inference strength rating for that item. On average,
utterances with partitives yielded stronger infer-
ence ratings than ones without.

(3) a. We [...] buy some of our own equipment. (5.3)
b. You sound like you have some small ones in the

background. (1.5)

Subjecthood: Utterances in which the some-NP
appears in subject position, as in (4a), yielded
stronger inference ratings than utterances in which
the some-NP appears in a different grammatical
position, e.g., as a direct object as in (4b).

(4) a. Some kids are really having it. (5.9)
b. That would take some planning. (1.4)

Previous mention: Discourse properties also have
an effect on inference strength. A some-NP with a
previously mentioned embedded NP referent yields
stronger inferences than a some-NP whose embed-
ded NP referent has not been previously mentioned.
For example, (5a) contains a some-NP in which
them refers to previously mentioned Mission Im-
possible tape recordings, whereas problems in the
some-NP in (5b) has not been previously men-
tioned.

(5) a. I’ve seen some of them on repeats. (5.8)
b. What do you feel are some of the main prob-

lems? (3.4)

Modification: Degen (2015) also found a small
effect of whether or not the head noun of the some-
NP was modified: some-NPs with unmodified head
nouns yielded slightly stronger inferences than
those with modified head nouns.
Determiner strength: Finally, it has been argued
that there are two types of some: a weak some and

https://github.com/yuxingch/Implicature-Strength-Some
https://github.com/yuxingch/Implicature-Strength-Some


a strong some (Milsark, 1974; Barwise and Cooper,
1981). This weak/strong distinction has been no-
toriously hard to pin down (Horn, 1997) and De-
gen (2015) used empirical strength norms elicited
independently for each item. To this end, she ex-
ploited the fact that removing weak some from an
utterance has little effect on its meaning whereas
removing strong some changes the meaning. Deter-
miner strength ratings were thus elicited by asking
participants to rate the similarity between the origi-
nal utterance and an utterance without some (of) on
a 7-point Likert scale from ‘different meaning’ to
‘same meaning’. Items with stronger some – e.g.,
(6a), determiner strength 3.3 – yielded stronger in-
ference ratings than items with weaker some – e.g.,
(6b), determiner strength 6.7.

(6) a. And some people don’t vote. (5.2)

b. Well, we could use some rain up here. (2.1)

The quantitative findings from Degen (2015) are
summarized in Figure 4, which shows in blue the
regression coefficients for all predictors she con-
sidered (see the original paper for more detailed
descriptions).

For our experiments, we randomly split the
dataset into a 70% training and 30% test set, re-
sulting in 954 training items and 408 test items.

3 Model

The objective of the model is to predict mean in-
ference strength rating i given an utterance (a se-
quence of words) U = {w1, w2, ..., wN}. We
rescale the 1-to-7 Likert scale ratings to the in-
terval [0, 1]. Figure 1 shows the overall model
architecture. The model is a sentence classifica-
tion model akin to the model proposed by Lin et al.
(2017). It first embeds the utterance tokens us-
ing pre-trained embedding models, and then forms
a sentence representation by passing the embed-
ded tokens through a 2-layer bidirectional LSTM
network (biLSTM) (Hochreiter and Schmidhuber,
1997) with dropout (Srivastava et al., 2014) fol-
lowed by a self-attention mechanism that provides
a weighted average of the hidden states of the top-
most biLSTM layer. This sentence representation
is then passed through a transformation layer with
a sigmoid activation function, which outputs the
predicted score in the interval [0, 1].

Figure 1: Model architecture.

4 Experiments

4.1 Training

We used 5-fold cross-validation on the training data
to optimize the following hyperparameters.
Word embedding model: 100d GloVe (Penning-
ton et al., 2014), 1024d ELMo (Peters et al., 2018;
Gardner et al., 2018), 768d BERT-base, 1024d
BERT-large (Devlin et al., 2019; Wolf et al., 2019).
Output layer of word embedding models: [1, 3]
for ELMo, [1, 12] for BERT-base, and [1, 24] for
BERT-large.
Dimension of LSTM hidden states:
{100, 200, 400, 800}.
Dropout rate in LSTM: {0.1, 0.2, 0.3, 0.4}.

We first optimized the output layer parameter
for each contextual word embedding model while
keeping all other parameters fixed. We then op-
timized the other parameters for each embedding
model by computing the average correlation be-
tween the model predictions and the human ratings
across the five cross-validation folds.
Architectural variants. We also evaluated all
combinations of two architectural variants: First,
we evaluated models in which we included the at-
tention layer (LSTM+ATTENTION) or simply used
the final hidden state of the LSTM (LSTM) as a
sentence representation. Second, since participants
providing inference strength ratings also had access
to 10 utterances from the preceding conversational
context, we also compared models that make pre-
dictions based only the target utterance with the
some-NP and models that make predictions based
on target utterances and the preceding conversa-
tional context. For the models using GloVe and
ELMo, we prepended the conversational context



to the target utterance to obtain a joint context and
utterance embedding. For models using BERT, we
made use of the fact that BERT had been trained to
jointly embed two sentences or documents, and we
obtained embeddings for the tokens in the target
utterance by feeding the target utterance as the first
document and the preceding context as the second
document into the BERT encoder. We discarded
the hidden states of the preceding context and only
used the output of BERT for the tokens in the target
utterance.
Implementation details. We implemented the
model in PyTorch (Paszke et al., 2017). We trained
the model using the Adam optimizer (Kingma and
Ba, 2015) with default parameters and a learning
rate of 0.001, minimizing the mean squared error
of the predicted ratings. In the no-context experi-
ments, we truncated target utterances longer than
30 tokens, and in the experiments with context, we
truncated the beginning of the preceding context
such that the number of tokens did not exceed 150.
Evaluation. We evaluated the model predictions
in terms of their correlation r with the human in-
ference strength ratings. As mentioned above, we
optimized the hyperparameters using cross valida-
tion. We then took the best set of parameters and
trained a model on all the available training data
and evaluated that model on the held-out data.

4.2 Tuning results

Not surprisngly, we find that the attention layer
improves predictions and that contextual word em-
beddings lead to better results than the static GloVe
embeddings. We also find that including the con-
versational context does not improve predictions
(see Appendix A, for learning curves of all mod-
els, and Section 6, for a discussion of the role of
conversational context).

Otherwise, the model is quite insensitive to hy-
perparameter settings: neither the dimension of the
hidden LSTM states nor the dropout rate had con-
siderable effects on the prediction accuracy. We do
find, however, that there are differences depending
on the BERT and ELMo layer that we use as word
representations. We find that higher layers work
better than lower layers, suggesting that word rep-
resentations that are influenced by other utterance
tokens are helpful for this task.

Based on these optimization runs, we chose the
model with attention that uses the BERT-large em-
beddings but no conversational context for the sub-
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Figure 2: Correlation between empirical ratings and
predictions of the BERT-LARGE LSTM+ATTENTION
model on held-out test items.

sequent experiments and analyses.

4.3 Test results

Figure 2 shows the correlation between the best
model according to the tuning runs (now trained
on all training data) and the empirical ratings on
the 408 held-out test items. As this plot shows, the
model predictions fall within a close range of the
empirical ratings for most of the items (r = 0.78).3

Further, similarly as in the empirical data, there
seem to be two clusters in the model predictions:
one that includes lower ratings and one that in-
cludes higher ratings, corresponding to strong and
weak scalar inferences, respectively. The only sys-
tematic deviation appears to be that the model does
not predict any extreme ratings – almost all predic-
tions are greater than 2 or less than 6, whereas the
empirical ratings include some cases outside of this
range.

Overall, these results suggest that the model can
learn to closely predict the strength of scalar in-
ferences. However, this result by itself does not
provide evidence that the model learned associ-
ations between linguistic features and inference
strength, since it could also be that, given the large
number of parameters, the model learned spurious
correlations independent of the empirically estab-
lished feature-strength associations. To investigate
whether the model learned the expected associa-
tions, we probed the model’s behavior in multiple
ways, which we discuss next.

3For comparison, we estimated how well the human ratings
correlated through a bootstrapping analysis: We re-sampled
the human ratings for each item and computed the average
correlation coefficient between the original and the re-sampled
datasets, which we found to be approximately 0.93.



5 Model behavior analyses

Minimal pair analysis. As a first analysis, we
constructed artificial minimal pairs that differed
along several factors of interest and compared the
model predictions. Such methods have been re-
cently used to probe, for example, what kind of
syntactic dependencies different types of recurrent
neural network language models are capable of en-
coding or to what extent sentence vector representa-
tions capture compositional meanings (e.g., Linzen
et al. 2016; Gulordava et al. 2018; Chowdhury
and Zamparelli 2018; Ettinger et al. 2018; Mar-
vin and Linzen 2018; Futrell et al. 2019; Wilcox
et al. 2019), and also allow us to probe whether
the model is sensitive to controlled changes in the
input.

We constructed a set of 25 initial sentences with
some-NPs. For each sentence, we created 32 vari-
ants that differed in the following four properties of
the some-NP: subjecthood, partitive, pre-nominal
modification, and post-nominal modification. For
the latter three features, we either included or ex-
cluded of the or the modifier, respectively. For ex-
ample, the version in (7a) includes of the whereas
the version in (7b) lacks the partitive feature. To
manipulate subjecthood of the some-NP, we created
variants in which some was either the determiner in
the subject NP as in (7) or in the object-NP as in (8).
We also created passive versions of each of these
variants (9-10). Each set of sentences included a
unique main verb, a unique pair of NPs, and unique
modifiers. The full list of sentences can be found
in Appendix C.

(7) a. Some of the (organic) farmers (in the mountains)
milked the brown goats who graze on the mead-
ows.

b. Some (organic) farmers (in the mountains)
milked the brown goats who graze on the mead-
ows.

(8) The organic farmers in the mountains milked some
(of the) (brown) goats (who graze on the meadows).

(9) The brown goats who graze on the meadows were
milked by some (of the) (organic) farmers (in the
mountains).

(10) Some (of the) (brown) goats (who graze on the
meadows) were milked by the organic farmers in
the mountains.

Figure 3 shows the model predictions for the
manually constructed sentences grouped by the
presence of a partitive construction, the grammat-
ical function of the some-NP, and the presence of
a modifier. As in the natural dataset from Degen
(2015), sentences with a partitive received higher
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Figure 3: Average model predictions on manually con-
structed sentences, grouped by presence of partitives,
by grammatical function of the some-NP, and by pres-
ence of nominal modifiers. Semi-transparent dots show
predictions on individual sentences.

predicted ratings than sentences without a parti-
tive; sentences with subject some-NPs received
higher predicted ratings than sentences with non-
subject some-NPs; and sentences with a modified
head noun in the some-NP received lower predic-
tions than sentences with an unmodified some-NP.
All these results provide evidence that the model
learned the correct associations. This is particularly
remarkable considering the train-test mismatch: the
model was trained on noisy transcripts of spoken
language that contained many disfluencies and re-
pairs, and was subsequently tested on clean written
sentences.

Regression analysis. In the minimal pair analy-
sis above we only investigated model predictions
for three factors. As a second analysis, we there-
fore investigated whether the predictions of the
best neural network model explain the variance
explained by the linguistic features that modulate
inference strength. To this end, we used a slightly
simplified4 Bayesian implementation of the mixed-
effects model by Degen (2015) that predicted in-
ference strength ratings from hand-mined features.
We used the brms (Bürkner, 2017) and STAN (Car-
penter et al., 2017) packages and compared this
original model to an extended model that included
both all of the predictors of the original model as
well as the the output of the above NN model as

4We removed by-item random intercepts and by-subject
random slopes to facilitate inference. This simplification
yielded almost identical estimates as the original model by
Degen (2015).
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Bayesian mixed-effects regression models predicting the inference strength ratings. */**/*** indicate that the
probability of the coefficient of the original model having a larger magnitude than the coefficient of the extended
model is less than 0.05, 0.01, and 0.001, respectively.

a predictor. For this comparison, we investigated
whether the magnitude of a predictor in the origi-
nal model significantly decreased in the extended
model with the NN predictor, based on the reason-
ing that if the NN predictions explain the variance
previously explained by these manually coded pre-
dictors, then the original predictor should explain
no or less additional variance.

We approximated the probability that the mag-
nitude of the coefficient for the predictor i (βi) in
the extended model including the NN predictor is
smaller than the coefficient in the original model,
P (|βextendedi | < |βoriginali |), by sampling values
for each coefficient from the distributions of the
original and the extended models and comparing
the magnitude of the sampled coefficients. We re-
peated this process 1,000,000 times and treated the
simulated proportions as approximate probabilities.

An issue with this analysis is that estimating the
regression model only on the items in the held-
out test set yields very wide credible intervals for
some of the predictors–in particular for some of
the interactions–since the model infers these values
from very little data. We therefore performed this
regression analysis (and the subsequent analyses)
on the entire data. However, while we estimated
the regression coefficients from all the data, we
crucially obtained the NN predictions through 6-
fold cross-validation (without additional tuning of
hyperparameters), so that the NN model always
made predictions on data that it had not seen during
training. This did yield the same qualitative results
as the analyses only performed on the held-out test
items (see Appendix B) but it also provided us

with narrower credible intervals that highlight the
differences between the coefficient estimates of the
two models.

Figure 4 shows the estimates of the coefficients
in the original model and the extended model. We
find that the NN predictions explain some or all
of the variance originally explained by many of
the manually coded linguistic features: the esti-
mated magnitude of the predictors for partitive, de-
terminer strength, linguistic mention, subjecthood,
modification, utterance length, and two of the in-
teraction terms decreased in the extended model.
These results provide additional evidence that the
NN model indeed learned associations between
linguistic features and inference strength rather
than only explaining variance caused by individual
items. This is particularly true for the grammatical
and lexical features; we find that the NN predictor
explains most of the variance originally explained
by the partitive, subjecthood, and modification pre-
dictors. More surprisingly, the NN predictions also
explain a lot of the variance originally explained
by the determiner strength predictor, which was
empirically determined by probing human interpre-
tation and is not encoded explicitly in the surface
form utterance.5 One potential explanation for this
is that strong and weak some have different context
distributions. For instance, weak some occurs in
existential there constructions and with individual-
level predicates, whereas strong some tends not to
(Milsark, 1974; McNally and Geenhoven, 1998;

5As explained above, Degen (2015) obtained strength rat-
ings by asking participants to rate the similarity of the original
utterance and an utterance without the determiner some (of).



Carlson, 1977). Since pre-trained word embedding
models capture a lot of distributional information,
the NN model is presumably able to learn this as-
sociation.

Attention weight analysis. As a final type of
analysis, we analyzed the attention weights that
the model used for combining the token embed-
dings to a sentence embedding. Attention weight
analyses have been successfully used for inspect-
ing and debugging model decisions (e.g., Lee et al.,
2017; Ding et al., 2017; Wiegreffe and Pinter, 2019;
Vashishth et al., 2019; but see Serrano and Smith,
2019, and Jain and Wallace, 2019, for critical dis-
cussions of this approach). Based on these results,
we expected the model to attend more to tokens
that are relevant for making predictions.6 Given
that many of the hand-mined features that predict
inference strength occur within or in the vicinity of
the some-NP, we should therefore expect the model
to attend most to the some-NP.

To test this, we first explored whether the model
attended on average more to some than to other to-
kens in the same position. Further, we exploited the
fact that in English, subjects generally occur early
in a sentence. If the model attends to the vicinity of
the some-NP, the average attention weights should
be higher at early positions in utterances with a sub-
ject some-NP compared to utterances with a non-
subject some-NP, and conversely for late utterance
positions. We thus compared the average attention
weights for each position across utterances with
subject versus non-subject some-NPs. To make
sure that any effects were not only driven by the
attention weight of the some-tokens, we set the at-
tention weights of the token corresponding to some
to 0 and re-normalized the attention weights for
this analysis. Further, since the attention weights
are dependent on the number of tokens in the utter-

6As pointed out by one of the reviewers, given the trans-
former architecture, BERT token representations are influ-
enced by numerous tokens of the input sentence and therefore
it could be that the output representation of the i-th token
ultimately contains very little information about the i-th token
that was input to the model. Consequently, it could be that the
attention weights do not provide information about which to-
kens the model attends to. To rule out this possibility, we also
conducted the attention weight analysis for the model using
static GloVe embeddings, which always exclusively represent
the input token, and we found the same qualitative patterns as
reported in this section, suggesting that the attention weights
provide information about the tokens that are most informative
for making predictions. Nevertheless, we do want to caution
researchers from blindly trusting attention weight analyses and
recommend using this type of analysis only in combination
with other types of analyses as we have done in this work.

ance, it is crucial that the average utterance length
across the two compared groups be matched. We
addressed this by removing outliers and limiting
our analysis to utterances up to length 30 (1,028 ut-
terances), which incidentally equalized the number
of tokens across the two groups. These exclusions
resulted in tiny differences in the average atten-
tion weights, but the qualitative patterns are not
affected.

The left panel of Figure 5 shows the average at-
tention weight by position for some versus other
tokens. The model assigns much higher weight
to some. The center panel of Figure 5 shows the
average attention weight by position for subject
vs. non-subject some-NP utterances. The attention
weights are generally higher for tokens early in the
utterance,7 but the attention weights of utterances
with a subject some-NP are on average higher for
tokens early in the utterance compared to utter-
ances with the some-NP in non-subject positions.
Both of these findings provide evidence that the
model assigns high weight to the tokens within and
surrounding the some-NP.8

In a more targeted analysis to assess whether
the model learned to use the partitive feature, we
examined whether the model assigned higher at-
tention to the preposition of in partitive some-NPs
compared to when of occurred elsewhere. As ut-
terance length was again a potential confound, we
conducted the analysis separately on the full set
of utterances with raw attention weights and on a
subset that included only utterances with at least
two instances of of (128 utterances), in which we
renormalized the weights of of -tokens to sum to 1.

Results are shown in the right panel of Figure 5.
The attention weights were higher for of tokens
in partitive some-NPs, suggesting that the model
learned an association between partitive of in some-
NPs and inference strength.

7This is in part an artifact of shorter utterances which
distribute the attention weights among fewer tokens.

8The regression analysis suggests that the model learned
to make use of the subjecthood feature and previous work on
probing behavior of contextual word representations has found
that such models are capable of predicting dependency labels,
including subjects (e.g., Liu et al., 2019). We therefore also
hypothesize that the representations of tokens that are part of
a subject some-NP contain information about the subjecthood
status. This in return could be an important feature for the
output layer of the model and therefore be providing additional
signal for the model to attend to these tokens.
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6 Context, revisited

In the tuning experiments above, we found that
including the preceding conversational context in
the input to the model did not improve or lowered
prediction accuracy.9 At the same time, we found
that the model is capable of making accurate pre-
dictions in most cases without taking the preceding
context into account. Taken together, these results
suggest either that the conversational context is not
necessary and one can draw inferences from the
target utterance alone, or that the model does not
make adequate use of the preceding context.

Degen (2015) did not systematically investigate
whether the preceding conversational context was
used by participants judging inference strength. To
assess the extent to which the preceding context
in this dataset affects inference strength, we re-
ran her experiment, but without presenting partici-
pants with the preceding conversational context.10

If the context is irrelevant for drawing inferences,
then mean inference strength ratings should be very
similar across the two experiments, suggesting the
model may have rightly learned to not utilize the
context. If the presence of context affects inference
strength, ratings should differ across experiments,
suggesting that the model’s method of integrating
context is ill-suited to the task.

The new, no-context ratings correlated with the

9As suggested by a reviewer, we conducted post-hoc ex-
periments in which we limited the conversational context to
the preceding 2 or 5 utterances, which presumably have a
higher signal-to-noise ratio than a larger conversational con-
text of 10 preceding utterances. In these experiments, we
again found that including the conversational context did not
improve model predictions.

10We recruited 680 participants on Mechanical Turk who
each judged 20 or 22 items, yielding 10 judgments per item.

original ratings (r = 0.68, see Appendix D) but
were overall more concentrated towards the center
of the scale, suggesting that in many cases, partic-
ipants who lacked information about the conver-
sational context were unsure about the strength of
the scalar inference. Since the original dataset ex-
hibited more of a bi-modal distribution with fewer
ratings at the center of the scale, this suggests that
the broader conversational context contains impor-
tant cues to scalar inferences.

For our model, these results suggest that the rep-
resentation of the conversational context is inade-
quate, which highlights the need for more sophis-
ticated representations of linguistic contexts be-
yond the target utterance.11 We further find that the
model trained on the original dataset is worse at
predicting the no-context ratings (r = 0.66) than
the original ratings (r = 0.78), which is not surpris-
ing considering the imperfect correlation between
ratings across experiments, but also provides ad-
ditional evidence that participants indeed behaved
differently in the two experiments.

7 Conclusion and future work

We showed that despite lacking specific pragmatic
reasoning abilities, neural network-based sentence
encoders are capable of harnessing the linguistic
signal to learn to predict human inference strength
ratings from some to not all with high accuracy.
Further, several model behavior analyses provided
consistent evidence that the model learned asso-

11The representation of larger linguistic context is also im-
portant for span-based question-answer (QA) systems (e.g.,
Hermann et al., 2015; Chen, 2018; Devlin et al., 2019) and
adapting methods from QA to predicting scalar inferences
would be a promising extension of the current model.



ciations between previously established linguistic
features and the strength of scalar inferences.

In an analysis of the contribution of the conversa-
tional context, we found that humans make use of
the preceding context whereas the models we con-
sidered failed to do so adequately. Considering the
importance of context in drawing both scalar and
other inferences in communication (Grice, 1975;
Clark, 1992; Bonnefon et al., 2009; Zondervan,
2010; Bergen and Grodner, 2012; Goodman and
Stuhlmüller, 2013; Degen et al., 2015), the develop-
ment of appropriate representations of larger con-
text is an exciting avenue for future research.

We also only considered the supervised setting
in which the model was trained to predict inference
strength. It would be interesting to investigate how
much supervision is necessary and, for example,
to what extent a model trained to perform another
task such as predicting natural language inferences
is able to predict scalar inferences (see Jiang and
de Marneffe (2019b) for such an evaluation on pre-
dicting speaker commitment).

One further interesting line of research would be
to extend this work to other pragmatic inferences.
Recent experimental work has shown that inference
strength is variable across scale and inference type
(Doran et al., 2012; Van Tiel et al., 2016). We
treated some as a case study in this work, but none
of our modeling decisions are specific to some. It
would be straightforward to train similar models
for other types of inferences.

Lastly, the fact that the attention weights pro-
vided insights into the model’s decisions suggests
possibilities for using neural network models for
developing more precise theories of pragmatic
language use. Our goal here was to investigate
whether neural networks can learn associations for
already established linguistic features but it would
be equally interesting to investigate whether such
models could be used to discover new features,
which could then be verified in experimental and
corpus work, potentially providing a model-driven
approach to experimental and formal pragmatics.
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A Hyperparameter tuning

Figure 6 shows the learning curves averaged over the 5 cross-validation tuning runs for models using
different word embeddings. As these plots show, the attention layer improves predictions; contextual word
embeddings lead to better results than the static GloVe embeddings; and including the conversational
context does not improve predictions and in some cases even lowers prediction accuracy.
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Figure 6: Correlation between each model’s predictions on valuation set and empirical means, by training epoch.

B Regression analysis on held-out test data

Figure 7 shows the estimates of the predictors in the original and extended Bayesian mixed-effects models
estimated only on the held-out test data. We find the same qualitative effects as in Figure 4, but since these
models were estimated on much less data (only 408 items), there is a lot of uncertainty in the estimates and
therefore quantitative comparisons between the coefficients of the different models are less informative.
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Bayesian mixed-effects regression models predicting the inference strength ratings on the held-out test set.
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coefficient of the extended model is less than 0.05, 0.01, and 0.001, respectively.



C List of manually constructed sentences

Tables 1 and 2 show the 25 manually created sentences for the analyses described in the minimal pairs
analysis in Section 5. As described in the main text, we created 16 variants of the sentence with the
some-NP in subject position (sentences in the left column), and 16 variants of the sentence with the
some-NP in object position (sentences in the right column), yielding in total 800 examples.

Some of the attentive waiters at the gallery opening
poured the white wine that my friend really likes.

The attentive waiters at the gallery opening poured
some of the white wine that my friend really likes.

Some of the experienced lawyers in the firm negoti-
ated the important terms of the acquisition.

The experienced lawyers in the firm negotiated some
of the important terms of the acquisition.

Some of the award-winning chefs at the sushi restau-
rant cut the red salmon from Alaska.

The award-winning chefs at the sushi restaurant cut
some of the red salmon from Alaska.

Some of the brave soldiers who were conducting the
midnight raid warned the decorated generals who
had served in a previous battle.

The brave soldiers who were conducting the mid-
night raid warned some of the decorated generals
who had served in a previous battle.

Some of the eccentric scholars from the local college
returned the old books written by Camus.

The eccentric scholars from the local college re-
turned some of the old books written by Camus.

Some of the entertaining magicians with top hats
shuffled the black cards with dots.

The entertaining magicians with top hats shuffled
some of the black cards with dots.

Some of the convicted doctors from New York
called the former patients with epilepsy.

The convicted doctors from New York called some
of the former patients with epilepsy.

Some of the popular artists with multiple albums
performed the fast songs from their first album.

The popular artists with multiple albums performed
some of the fast songs from their first album.

Some of the angry senators from red states im-
peached the corrupt presidents from the Republican
party.

The angry senators from red states impeached some
of the corrupt presidents from the Republican party.

Some of the underfunded researchers without per-
manent employment transcribed the recorded con-
versations that they collected while doing fieldwork.

The underfunded researchers without permanent em-
ployment transcribed some of the recorded conver-
sations that they collected while doing fieldwork.

Some of the sharp psychoanalysts in training hyp-
notized the young clients with depression.

The sharp psychoanalysts in training hypnotized
some of the young clients with depression.

Some of the harsh critics from the Washington Post
read the early chapters of the novel.

The harsh critics from the Washington Post read
some of the early chapters of the novel.

Some of the organic farmers in the mountains
milked the brown goats who graze on the meadows.

The organic farmers in the mountains milked some
of the brown goats who graze on the meadows.

Some of the artisanal bakers who completed an
apprenticeship in France kneaded the gluten-free
dough made out of spelt.

The artisanal bakers who completed an apprentice-
ship in France kneaded some of the gluten-free
dough made out of spelt.

Some of the violent inmates in the high-security
prison reported the sleazy guards with a history of
rule violations.

The violent inmates in the high-security prison re-
ported some of the sleazy guards with a history of
rule violations.

Table 1: Manually constructed sentences used in the minimal pair analyses. Sentences in the left column have a
some-NP in subject position; sentences on the right have a some-NP object position.



Some of the eager managers in the company in-
structed the hard-working sales representatives in
the steel division about the new project management
tool.

The eager managers in the company instructed some
of the hard-working sales representatives in the steel
division about the new project management tool.

Some of the brilliant chemists in the lab oxidized
the shiny metals extracted from ores.

The brilliant chemists in the lab oxidized some of
the shiny metals extracted from ores.

Some of the adventurous pirates on the boat found
the valuable treasure that had been buried in the
sand.

The adventurous pirates on the boat found some of
the valuable treasure that had been buried in the
sand.

Some of the mischievous con artists at the casino
tricked the elderly residents of the retirement home.

The mischievous con artists at the casino tricked
some of the elderly residents of the retirement home.

Some of the persistent recruiters at the conference
hired the smart graduate students who just started a
PhD as interns.

The persistent recruiters at the conference hired
some of the smart graduate students who just started
a PhD as interns.

Some of the established professors in the depart-
ment supported the controversial petitions that were
drafted by the student union.

The established professors in the department sup-
ported some of the controversial petitions that were
drafted by the student union.

Some of the muscular movers that were hired by the
startup loaded the adjustable standing desks made
out of oak onto the truck.

The muscular movers that were hired by the startup
loaded some of the adjustable standing desks made
out of oak onto the truck.

Some of the careful secretaries at the headquarter
mailed the confidential envelopes with the bank
statements.

The careful secretaries at the headquarter mailed
some of the confidential envelopes with the bank
statements.

Some of the international stations in South America
televised the early games of the soccer cup.

The international stations in South America tele-
vised some of the early games of the soccer cup.

Some of the wealthy investors of the fund exces-
sively remunerated the successful brokers working
at the large bank.

The wealthy investors of the fund excessively remu-
nerated some of the successful brokers working at
the large bank.

Table 2: Manually constructed sentences used in the minimal pair analyses (continued).



D Results from no-context experiment

Figure 8 shows the correlation between the mean inference strength ratings for each item in the experiment
from Degen (2015) and the mean strength ratings from the new no-context experiment, discussed in
Section 6.
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Figure 8: Mean inference strength ratings for items without context (new) against items with context (original),
r = .68.


