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Abstract

Vocabulary growth and syntactic development are known to
be highly correlated in early child language. What determines
when words are acquired and how can this help us understand
what drives early language development? We train an LSTM
language model, known to detect syntactic regularities that are
relevant for predicting the difficulty of words, on child-directed
speech. We use the average surprisal of words for the model,
which encodes sequential predictability, as a predictor for the
age of acquisition of words in early child language. We com-
pare this predictor to word frequency and others and find that
average surprisal is a good predictor for the age of acquisition
of function words and predicates beyond frequency, but not
for nouns. Our approach provides insight into what makes a
good model of early word learning, especially for words whose
meanings rely heavily on linguistic context.
Keywords: Language model; recurrent neural network;
LSTM; language acquisition; age of acquisition; child directed
speech; word learning.

Introduction
Children’s lexicon and syntactic abilities grow in tandem, re-
sulting in a tight correlation between vocabulary size and
grammatical complexity (Bates et al., 1994; Brinchmann,
Braeken, & Lyster, 2019; Frank, Braginsky, Marchman, &
Yurovsky, 2019). Additionally, children are remarkably con-
sistent in the order in which the acquire their first words
(Tardif et al., 2008; Goodman, Dale, & Li, 2008). This order-
ing consistency presents an opportunity: modeling of when
words are acquired can help us understand what drives lan-
guage learning more generally.

This general approach relies on creating quantitative mod-
els of children’s average age of acquisition (AoA) for words.
These analyses typically combine large-scale survey data
about word acquisition with corpus estimates of language in-
put from different children to make aggregate-level predic-
tions. Such studies have investigated the effects of word prop-
erties such as frequency, number of phonemes, and concrete-
ness, across a range of languages (Goodman et al., 2008; Ku-
perman, Stadthagen-Gonzalez, & Brysbaert, 2012; Bragin-
sky, Yurovsky, Marchman, & Frank, 2019), with simple fre-
quency typically being the most important factor: the more
frequent a word is in the child’s linguistic input, the earlier it
is acquired.

These analyses have generally not considered the linguis-
tic contexts in which words appear, however. Some analy-
ses have considered the length of utterances as a weak proxy

for sentence complexity (Braginsky et al., 2019). Some have
also considered contextual diversity – a measure of seman-
tic co-occurrence – as a possible predictor of AoA beyond
frequency (Hills, Maouene, Riordan, & Smith, 2010). This
could be considered a proxy for some semantic factors but
does not directly measure syntactic complexity. Given the
strong connection between vocabulary growth and syntactic
ability in children’s output, we hypothesize that the syntactic
contexts in which words appear in children’s language input
should be an important factor as well. To test this hypothe-
sis, we use a computational language model in concert with a
broad array of child-language data sets to predict when words
are acquired, exploring contextual linguistic information be-
yond first-order word frequency.

We use a long-short term memory (LSTM) neural model
(Hochreiter & Schmidhuber, 1997), trained on child-directed
speech, as our model of contextual information in sequences
and as a proxy for syntactic complexity. LSTMs are a form of
recurrent neural network (RNN) that can be used as language
models (Sundermeyer, Schlüter, & Ney, 2012). Language
models are trained on corpora to predict the next word in a
sequence. Though more recent language models outperform
LSTMs (Vaswani et al., 2017), they are a strong standardized
baseline and have many useful analytic properties. They pro-
cess utterances incrementally and make use of nested layers
of hidden units to learn abstract representations that can pre-
dict sequential dependencies between words across a range
of dependency lengths (Linzen, Dupoux, & Goldberg, 2016).
Unlike regular RNNs, LSTM units use a gating system that
allows them to ‘forget’ some of the previous states while ‘re-
membering’ others, thus learning to prioritize some depen-
dencies in a sequence over others at each state. Further, reg-
ular RNNs have previously been proposed as cognitive mod-
els for language learning (Elman, 1990, 1993; Christiansen,
Allen, & Seidenberg, 1998), however, these earlier models
were computationally limited and could be used only with
small, schematic datasets; in contrast, LSTMs can be applied
to larger datasets. Thus, LSTM language models lend them-
selves well to our project.

As our linking hypothesis between the LSTM model and
children’s difficulty, we use the model’s average surprisal:
the negative log probability of a word wi in a given context
w1...i−1, averaged across all contexts in which it appears, C.



∑
C:wi∈C

− logP(wi | w1...i−1)×
1
|C|

Since the LSTM’s learning objective is to minimize the sur-
prisal of words in context, the average surprisal of a word con-
stitutes a measure of how difficult that word is for the model
to represent. In addition to being an appropriate measure of
difficulty for the LSTM, surprisal has also been shown to be a
strong predictor of human processing difficulty in psycholin-
guistic experiments (Levy, 2008; Demberg & Keller, 2008).1

Our approach is as follows. First we describe the data we
use for training, then we describe the LSTM model architec-
ture and training2. We then compare regression models of
children’s AoA using average surprisal as one key predictor
in concert with previous predictor sets. An important advance
over previous work is the use of cross-validation to estimate
out-of-sample performance. In sum, our approach allows us
to determine the predictive power of this new measure and
to investigate how well sequential prediction difficulty in an
LSTM relates to patterns of acquisition for children.

Corpus Data
To train the model, we compiled a dataset of child-directed
speech from the CHILDES database (MacWhinney, 2000).
We included all of the child-directed utterances from the
39 largest single-child English corpora available through the
childes-db API (Sanchez et al., 2018). To ensure a reason-
able sample of child-directed speech from each contributing
corpus, we selected corpora that contained at least 20,000 to-
kens and a ratio of child to child-directed utterances of at least
1:20. The corpora come from 18 distinct studies and were
all longitudinal, with recording transcripts typically com-
ing from regular hour-long recording sessions at the child’s
home. The age of children in the transcripts ranged from 9
months to ∼ 5 years of age, with a mean of 32 months (2;9
years). Most of the data were from children between the ages
of 2 to 4 years (see Figure 1). The resulting dataset of child-
directed utterances from these corpora contains over 6.5 mil-
lion words. Utterances were transformed to lowercase, and all
punctuation except for end of sentence tokens was removed
before being passed to the model.

Language Model
We use a two-layered LSTM recurrent neural network, illus-
trated in Figure 2. The model has randomly initialized 100-
dimensional word embeddings as its input layer, which are
updated during learning. Hidden states encode information
about the preceding context. At each time-step, the current
word embedding wt and the hidden state from the previous
time-step h1

t−1 are passed through a transformation function,
resulting in a new hidden state h1

t . This hidden state h1
t and the

1For an overview of empirical evidence supporting the validity
of surprisal as a predictor of processing difficulty, see Hale, 2016.

2All code and data for this paper are available at
www.github.com/eporte2/aoa lstm prediction.

Figure 1: The overall distribution of children’s age at the time
of child-directed utterance production across all of the data.

Figure 2: The LSTM model architecture incrementally pro-
cessing the utterance ‘I want my Blanky’.

hidden state from the previous time-step in the second layer
h2

t−1 are then also passed through a transformation function,
resulting in a new hidden state h2

t . This final hidden state then
undergoes a transformation to produce the output layer – a
distribution over the whole vocabulary representing a predic-
tion about the upcoming word. In order to limit the number
of parameters in the model, we limited vocabulary size to the
10,000 most frequent words.

The model’s learning objective is to minimize the surprisal
(negative log probability) of words given their preceding con-
text in an utterance. (The average surprisal of a word across
all the utterances in which it appears is therefore a measure
of how difficult it is for the model to converge on a represen-
tation for the word, an observation we leverage in our sim-
ulations below). We trained the model on 80% of all of the
child-directed utterances (and no child-produced utterances).
The remaining 20% were used as a validation set to evalu-
ate the model’s performance during training (to avoid overfit-
ting). Utterances were shuffled at each epoch of training. The



model saw 32 sentences per epoch before performing back-
propagation, after which we calculated the categorical cross
entropy loss of the model on 32 unseen utterances from the
validation set. If the loss on the validation set did not im-
prove for more than 10 epochs in a row, we terminated model
training.

We performed cross-validation tests to find the parame-
ter settings for the LSTM language models that best mini-
mized surprisal. The parameters we tested were the number
of LSTM layers (1 or 2); the size of the hidden dimension for
the hidden state (5, 10, 25, 50); the size of the output word
vectors (10, 50, 100); the regularization method to be used
(L1, L2, and elastic net). We found that the optimal param-
eter combination was to have 2 hidden LSTM layers with a
hidden dimension of 50 units, 100-dimensional word vectors,
and elastic net regularization.

Prediction Task

Our goal was to understand whether sequential predictability
– surprisal in the trained LSTM model – is related to difficulty
of acquisition for children. In other words, are words that are
difficult for the model to predict also difficult for children to
learn? In this section, we describe the data and experimental
procedures used to explore this question.

Data

Following Braginsky et al., 2019, we estimated AoA using
the MacArthur-Bates Communicative Development Invento-
ries (CDI) (Fenson et al., 1993)3. The CDI is an instrument
for parents to report their child’s vocabulary – essentially, a
checklist of words. We accessed American English CDI data
through Wordbank, a cross-linguistic repository for CDI data
(Frank, Braginsky, Yurovsky, & Marchman, 2016). We used
the “Words & Sentences” version of the CDI, which asks par-
ents to report on which words their child produces and is rec-
ommended for use with children ages 16 – 30 months.

To select the list of words for AoA prediction, we be-
gan with the 375 word list used by Braginsky et al., 2019
so that we could make use of that study’s other predictors.
We then discarded any item which contained multiple words
(e.g. peanut butter, choo choo), since the LSTM would have
considered these as separate items. We also discarded any
item for which the lexical category was either unavailable or
marked as “other” since we were interested in the interaction
between the lexical category of a word and its average sur-
prisal or frequency. This left a total of 314 words for which
we could predict AoA (189 nouns, 91 predicates, and 34 func-
tion words).

3A reviewer asked why we chose to use these AoA estimates
over those of Kuperman et al., 2012. Though Kuperman et al., 2012
have estimates for a much larger vocabulary, they are based on adult
estimates of their own AoA, rather than timely reports of children’s
AoA. Thus, we favored using AoA estimates collected from CDI
instruments.

Table 1: Variance inflation factor (VIF) for all predictors.

Predictor VIF
average surprisal 1.40
frequency 1.42
number of phonemes 1.19
concreteness 3.54
valence 1.05
arousal 1.17
babiness 1.12
lexical category 5.63

Age of acquisition estimates

Our predictive target is the age at which a word is acquired.
We assume that AoA correlates with ease of acquisition.
Since not all children learn a given word at the same time,
we instead quantified AoA as the age at which 50% of chil-
dren are reported to produce a word (Goodman et al., 2008).

There are a number of methods to estimate the 50% point.
The simplest method is to determine the youngest age group
at which the empirical proportion of children producing the
word is > 50%, but this approach has several shortcomings.
If words are very hard or very easy to learn, then it is possi-
ble that for the covered age range some words never reach the
50% point (e.g., beside), or have already surpassed the 50%
point (e.g., Mommy). Such words would have to be discarded
if we were to use this method. Another issue is that this ap-
proach is susceptible to bias AoA estimates towards ages for
which more CDI instruments were available since the num-
ber of observations at each age is not equal (i.e., there may
be more CDI instruments filled with 24-month-olds than with
20-month-olds in the dataset).

For these reasons, we base our AoA estimates on the model
provided by Frank et al. (2019), a Bayesian generalized linear
model with hand-tuned prior parameters that were fitted to the
English Words & Sentences CDI instruments from Wordbank
(for more detailed description see Appendix E of Frank et al.,
2019).

Predictors

We next describe the predictors of AoA that we use in our
regression models.

Average surprisal We used the LSTM model described
above to compute the average surprisal of each word across
all of the utterances in the corpus. To set an upper bound
on surprisal, we added a small normalizing constant ε ≈
2.22×10−16 to the predicted probability of each word. This
step was necessary because in very unlikely contexts, given
the size of the vocabulary, the probability of a word was on
occasion so small that it led to infinite surprisal values. Thus,
the average surprisal values are capped at an upper bound of
− logε.



Frequency We calculated the raw frequency counts of
words for each of the 39 CHILDES corpora used to train the
model and then weighted the counts based on each corpus
size. We then averaged the weighted frequencies across all
the corpora, excluding any zero counts. We did not aggregate
counts across inflected forms (e.g. ‘give’ and ‘gave’) since
the LSTM language model considered inflected forms sepa-
rately during learning.

Other predictors We also included predictors used by
Braginsky et al. (2019): the number of phonemes in each
word, which is a proxy for production difficulty; concrete-
ness, capturing conceptual difficulty; valence and arousal,
capturing emotional aspects of the words); and babiness,
which captures the association of particular words with ba-
bies and acts as a proxy for how likely babies are to be ex-
posed to and to attend to specific items. For a full description
of these predictors see Braginsky et al., 2019.

Lexical category interactions All of the previously listed
predictors were tested for interactions with lexical category.
We considered three lexical categories: nouns (common
nouns), predicates (verbs, adjectives, and adverbs), and func-
tion words (closed-class words) following Bates et al., 1994.
Word categories were derived from the categories on the CDI
forms (e.g., verbs are listed as “action words”).

Collinearity analysis
We did not observe strong correlations between any of the
predictors. We also did not find evidence for multicollinear-
ity. The strongest Pearson correlation coefficient we found
was between surprisal and concreteness, r = 0.41. Frequency
and surprisal had a correlation of r =−0.35. All other corre-
lation coefficients were negligible (≤ +/- 0.3). Table 1 shows
the variance inflation factor (VIF) for all predictors. VIFs
were relatively low, with the exception of concreteness and
lexical category: both these predictors are categorical vari-
ables with relatively few levels (5 and 3 levels respectively).
Thus, these slightly higher VIFs can be safely ignored.

Regression models
To determine if the average surprisal from the LSTM lan-
guage model increased the accuracy of AoA predictions, we
compared linear regression models with different predictor
sets using leave-one-out (LOO) cross-validation. We eval-
uated the mean absolute deviation (MAD) of these models’
predictions across all words (each word represents one in-
stance of a LOO model fit). The absolute deviation of a word
is the absolute difference in months between the actual AoA
estimate and the predicted AoA.

The full model we examined contained all predictors and
their interactions with lexical category and was specified as:
AoA ∼ lexical category ∗ ( average surprisal +
frequency+ number of phonemes+ concreteness+
valence + arousal + babiness ) .

We were interested in the relationship of surprisal and
frequency, including whether the two predictors each made

Table 2: Mean absolute deviation (MAD) in months
of predicted AoA to actual AoA estimate across all
words using LOO cross-validation by model, AoA ∼
lexical category ∗ predictors. Other predictors are
number of phonemes, concreteness, valence, arousal,
and babiness.

Predictors MAD 95%CI
null model 2.35 [2.14, 2.56]
surprisal 2.12 [1.91, 2.32]
frequency 2.00 [1.82, 2.18]
surprisal + frequency 2.00 [1.81, 2.21]
surprisal + others 1.97 [1.79, 2.18]
frequency + others 1.92 [1.74, 2.09]
surprisal + frequency + 1.88 [1.70, 2.05]
others

unique contributions to prediction performance. Thus, we
compared performance of the full model to: a null model with
no predictors; models including only frequency or surprisal;
and the various combinations of surprisal, frequency, and the
other predictors above.

Results and Discussion
The MAD for each model after cross-validation is shown
in Table 2. The null model represents the null hypothesis
where we predict the mean AoA for all words simply from
the intercept. This baseline model’s MAD is 2.35 months.
In other words, on average, the null model is off by 2.35
months across all words and LOO cross-validation folds. The
best model improves on this baseline by reducing the MAD
to 1.88 months.

A model including frequency alone was more accurate on
average than a model including surprisal alone. Thus, we did
not find that surprisal could subsume frequency. However, the
best model was the full model with all predictors, surprisal
+ frequency + others, demonstrating that surprisal added
information beyond frequency when predicting held out data
during cross-validation. A nested model comparison be-
tween this full model and the one without surprisal and its
interactions with lexical category as predictors (frequency
+ others) fitted on all of the data revealed that surprisal and
its interactions with lexical category explained variance above
and beyond frequency (F3,290 = 4.32, p < .01).

Figure 3 illustrates the direction of the estimates for
frequency and surprisal in the best model (surprisal +
frequency + others) for each lexical category from the
cross-validation. Frequency has negative estimates across all
lexical categories. This means that the more frequent a word
is in the input, the lower its AoA, or the easier it is to ac-
quire. In contrast, for surprisal, coefficients were positive for
function words and predicates (but not for nouns). Thus, the
higher the average surprisal of a predicate or function word
— i.e. the less predictable it is across contexts — the later its



Figure 3: Estimates for frequency and average sur-
prisal for best model (average surprisal + frequency
+ others) by lexical category (main effect of predictor +
main effect of lexical category + interaction between predic-
tor and lexical category). Each faded point represents a fold
of the leave-one-out cross validation, i.e. one word. The large
bordered dots represents the mean of each estimate across
folds.

AoA. This relation was not present for nouns, however, sug-
gesting that surprisal did not predict difficulty of acquisition.

When we compared the model with frequency and other
predictors to the full model that included surprisal, we found
that the words which benefited the most from the addition of
the surprisal predictor were function words and predicates.
The top 50 words with the largest reduction in absolute devi-
ation are shown in Figure 4. Overall, adding surprisal saw a
mean increase in MAD of 0.007 for nouns – that is, the full
model did slightly worse at predicting the AoA of nouns –
but a mean decrease of MAD of 0.218 for function words and
0.082 for predicates.

Function words and predicates are words that require other
dependent words to fully express their meaning (Gleitman,
1990). Thus, it makes sense that the variability in their con-
texts of use – as captured by model surprisal beyond fre-
quency – should be an important indicator of their learnabil-
ity. In contrast, nouns in child-directed speech tend to be
concrete: The mean concreteness score taken from Brysbaert,
Warriner, & Kuperman, 2014, for all nouns in our data on a
scale of 1 through 5 (1=abstract, 5=concrete) is 4.86 – almost
all the nouns are concrete (for comparison, the mean score for
function words is 2.71 and for predicates is 3.50). It is there-
fore possible that children use other cues in their environment
when they hear these words which may contain much richer
sources of information beyond the linguistic context in which
the word was uttered, such as pointing, gaze, or joint attention
to a given object.

General Discussion
A fully-explicit theory of early language should ideally pro-
vide strong predictions about the course of acquisition. To-
wards this general goal, previous work has explored the spe-
cific challenge of predicting which words are learned earlier
or later (e.g. Goodman et al., 2008; Braginsky et al., 2019).

Figure 4: The top 50 words for which adding average sur-
prisal as a predictor improves model fit. The difference
in absolute deviation by word (top 50/314 words or 16%
of the corpus) between a model with average surprisal
+ frequency + other and frequency + other. These
words represent 17/34 (50%) of function words, 32/91
(35.16%) of predicates, and only 1/189 (0.53%) of nouns.



Here we focused on understanding the role of sequential pre-
dictability in what makes particular words easy or hard to
acquire. We used an LSTM – a generic language model –
trained on a corpus of child-directed speech, to estimate the
average surprisal of specific words. When added to regression
models, these surprisal estimates increased predictive accu-
racy over and above simple frequency and other predictors
from prior research. The LSTM was especially useful in pre-
dicting children’s difficulties on those words for which lin-
guistic context is important to meaning: function words and
predicates.

Though the LSTM is a useful tool for understanding sen-
tence predictability, it is only one of many architectures we
could have used and is not a proposal for a cognitive model
of children’s sequential processing. Further, we were lim-
ited by the amount of data available in CHILDES in English;
LSTM language models are usually trained on larger data sets
than the one used here (though more data does not necessarily
mean that models learn better representations; van Schijndel,
Mueller, & Linzen, 2019). Our corpus was – by necessity
– assembled from many sub-corpora from different children,
and does not represent a true estimate of the regularity, id-
iosyncrasy, and contextual diversity found in the language
targeted to a single child. Additionally, our corpus contained
utterances directed at children who were older in some cases
than those surveyed for the AoA estimates. Ideally, these sen-
tences would span the exact same developmental stages. Fu-
ture work should address these issues.

Theories of language learning must explain not just words
like “ball” and “dog” but also words – especially function
words – whose meaning in context is almost entirely depen-
dent on other words. Sequential models like the LSTM we
used here may be a promising avenue for helping to explain
the acquisition of these “hard words”. A goal for future work
is to understand how sequential (syntactic) information can
be combined with other contextual and semantic information,
and how the interaction of these factors might lead to the dif-
ferent acquisition trajectories for nouns and function words.
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Sundermeyer, M., Schlüter, R., & Ney, H. (2012). LSTM
neural networks for language modeling. In 13th annual
conference of the international speech communication as-
sociation.

Suppes, P. (1974). The semantics of children’s language.
American Psychologist, 29(2), 103–114.

Tardif, T., Fletcher, P., Liang, W., Zhang, Z., Kaciroti, N., &

Marchman, V. A. (2008). Baby’s first 10 words. Develop-
mental Psychology, 44(4), 929.

Theakston, A. L., Lieven, E. V., Pine, J. M., & Rowland, C. F.
(2001). The role of performance limitations in the acqui-
sition of verb-argument structure: An alternative account.
Journal of Child Language, 28(1), 127–152.

van Schijndel, M., Mueller, A., & Linzen, T. (2019). Quantity
doesn’t buy quality syntax with neural language models.
arXiv:1909.00111.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., . . . Polosukhin, I. (2017). Attention is all
you need. In Advances in neural information processing
systems (pp. 5998–6008).

Weist, R. M., & Zevenbergen, A. A. (2008). Autobiograph-
ical memory and past time reference. Language Learning
and Development, 4(4), 291–308.


