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Abstract

The iterated best response (IBR) model is a
game-theoretic approach to formal pragmatics
that spells out pragmatic reasoning as back-
and-forth reasoning about interlocutors’ ratio-
nal choices and beliefs (Franke, 2011; Jager,
2011). We investigate the comprehension and
production of referential expressions within
this framework. Two studies manipulating
the complexity of inferences involved in com-
prehension (Exp. 1) and production (Exp. 2)
of referential expressions show an intriguing
asymmetry: comprehension performance is
better than production in corresponding com-
plex inference tasks, but worse on simpler
ones. This is not predicted by standard formu-
lations of IBR, which makes categorical pre-
dictions about rational choices. We suggest
that taking into account quantitative informa-
tion about beliefs of reasoners results in a bet-
ter fit to the data, thus calling for a revision of
the game-theoretic model.

1 Introduction

Reference to objects is pivotal in communication
and a central concern of linguistic pragmatics. If
interlocutors were ideal reasoners, speakers would
choose the most convenient referential expression
that is sufficiently discriminating given the hearer’s
perspective, while hearers would choose the referent
for which an observed referential expression is opti-
mal given the speaker’s perspective. But it would be
folly to assume that humans are ideal reasoners, so
the question is: how much do interlocutors take each
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other’s perspective into account when producing and
interpreting referential expressions?

A lot of work has been dedicated to this is-
sue. For example, computational linguists have in-
vestigated efficient and natural rules for generat-
ing and comprehending referential expressions (see
Dale and Reiter (1995) and Golland et al. (2010)
for work directly related to ours). Many empirical
studies have addressed the more specific questions
of whether, when and/or how, hearers take speakers’
privileged information into account (Keysar et al.,
2000; Keysar et al., 2003; Hanna et al., 2003; Heller
et al., 2008; Brown-Schmidt et al., 2008). Also, eye-
tracking studies in the visual-world paradigm have
been used to investigate how quantity reasoning in-
fluences the interpretation of referential expressions
(Sedivy, 2003; Grodner and Sedivy, 2011; Huang
and Snedeker, 2009; Grodner et al., 2010). In recent
work closely related to ours, Stiller et al. (2011) and
Frank and Goodman (2012) proposed a Bayesian
model of producing and comprehending referential
expressions in a game setting similar to the kind we
consider here. We will more closely compare these
related approaches in Section 6. Despite these var-
ious efforts, it is still a matter of debate whether or
to what extent interlocutors routinely consider each
other’s perspective.

In order to contribute to this question, we follow
a recent line of experimental approaches to formal
epistemology and game theory (Hedden and Zhang,
2002; Crawford and Iriberri, 2007) to investigate
how much strategic back-and-forth reasoning speak-
ers and hearers employ in abstract language games.
The tasks we investigate translate directly to the kind



of signaling games that have variously been used
to account for a number of pragmatic phenomena,
most notably conversational implicatures (see, e.g.,
Parikh (2001), Benz and van Rooij (2007) or Jager
(2008)). A benchmark model of idealized step-by-
step reasoning, called iterated best response (IBR)
model, exists for these games (Franke, 2011; Jager,
2011). 1BR makes concrete predictions about the
depth of strategic reasoning required to “solve” dif-
ferent kinds of referential language games, so that
by varying the difficulty of our referential tasks, it is
possible to both: (i) test the predictions of IBR mod-
els of pragmatic reasoning and (ii) determine the ex-
tent to which speakers and hearers reason strategi-
cally about the use of referential expressions.

Our data shows that participants perform better at
reasoning tasks that IBR predicts to involve fewer in-
ference steps. This holds for comprehension and
production. However, our data also shows an in-
teresting asymmetry: comprehension performance
is better than production in corresponding complex
inference tasks, but worse on simpler ones. This
is not predicted by standard formulations of IBR
which makes categorical predictions about rational
choices. However, it is predicted by a more nuanced
variation of IBR that pays attention to the quantita-
tive information in the belief hierarchies postulated
by the model.

Section 2 introduces signaling games as abstract
models of referential language use. Section 3 out-
lines the relevant notions of IBR reasoning. Sec-
tions 4 & 5 describe our comprehension and pro-
duction studies respectively. Section 6 discusses the
results.

2 Referential Language Games

If speaker and hearer share a commonly observ-
able set T' of possible referents in their immediate
environment, referential communication has essen-
tially the structure of a signaling game: the sender
S knows which ¢ € T she wants to talk about, but
the receiver R does not; the speaker chooses some
description m; if R can identify the intended refer-
ent, communication is successful, otherwise a fail-
ure. Such a game consists of a set 1" (of possible
referents), a set M of messages that .S could use,
a prior probability distribution Pr over T that cap-

tures R’s prior expectation about the most likely in-
tended referent, and a utility function that captures
the players’ preferences in the game. We assume
that S and R are both interested in establishing refer-
ence, so that if ¢ is the intended referent and ¢’ is R’s
guess, then for some constants s > f: U(¢,t') = sif
t = t" and f otherwise. Additionally, if messages are
meaningful, this is expressed by a denotation func-
tion [m] C T that gives the set of referents to which
m is applicable (e.g., of which it is true).

Consider, e.g., the situations depicted in Fig. 1.
There are three possible referents 7' = {t,tc,tq}
in the form of monsters and robots wearing one ac-
cessory each that both S and R observe. Since
there is no reason to prefer any referent over an-
other, we assume that Pr is a flat distribution over
T. There are also four possible messages M =
{my¢, mc, mq1, mqa} with some intuitively obvious
“semantic meaning”. For example, the message m.
for red hat would intuitively be applicable to ei-
ther the robot ty or the green monster t., so that

[me] = {te, tc}-

Signaling games like those in Fig. 1 are the basis
for the critical conditions of our experiments (see
also Sections 4 and 5), where we test which refer-
ent subjects choose for a given trigger message and
which message they choose for a trigger referent.
Trigger items for comprehension and production ex-
periments are marked with an asterisk in Fig. 1. In-
dices t, ¢, d stand for target, competitor and distrac-
tor respectively.

We refer to a game as in Fig. 1(a) as the simple
implicature condition, because it involves a simple
scalar implicature. Hearing trigger message m}, R
should reason that S must have meant target state t,
and not competitor state t., because if S had wanted
to refer to the latter she could have used an unam-
biguous message. Conversely, when S wants to re-
fer to trigger state t., she should not use the true but
semantically ambiguous message m., because she
has a stronger message my. Similarly, we refer to a
game in Fig. 1(b) as the complex implicature condi-
tion, because it requires performing scalar reasoning
twice in sequence (see Fig. 2 later on).
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3 IBR Reasoning

The 1BR model defines two independent strands of
strategic reasoning about language use: one that
starts with a naive (level-0) receiver Ry and one that
starts with a naive sender Sy (Franke, 2011; Jager,
2011). If utilities are as indicated and priors are flat,
the behavior of level-0 players is predicted to be a
uniform choice over options that conform to the se-
mantic meaning of messages: Ro(m) = [m] and
So(t) = {m | t € [m]}. Sophisticated player types
of level k + 1 play any rational choice with equal
probability given a belief that the opponent player
is of level k. For our experimental examples, the
“light” system of Franke (2011) applies, where so-
phisticated types are defined as:!

arg minmeR;(t) | Ri.(m) |

Sea(t) = if R (1) # 0
So(t) otherwise
arg mintes;1(m) | Sk(t) |

Ry41(m) = if 5,1 (m) #0

Ro(m) otherwise

The sequences of best responses for the simple and
complex games from Fig. 1 are given in Fig. 2. On
this purely qualitative picture, the IBR model makes
the same predictions for comprehension and pro-
duction. In the simple condition, the trigger item
is mapped to either target or competitor with equal
chance by naive players; all higher level types map
the trigger item to the target item with probability
one. In the complex condition, the trigger items
are mapped to target and competitor in levels O and
1 with equal probability, but uniquely to the target
item for k > 2.

The sequences in Fig. 2 only consider the actual
best responses of S and R, but not the more nuanced
quantitative information that gives rise to these. Best
responses are defined as those that maximize ex-
pected utility given what the players believe about
how likely each choice option would lead to com-
municative success. The relevant expected success
probabilities are given in Table 1 for sophisticated

'"Here R, ' (t) = {m | t € Rix(m)}. Likewise for S; '.

types. (Naive types have no or only trivial beliefs
about the game.)

For reasons of space suffice it to give the intu-
ition behind these numbers. E.g., in the simple con-
dition R; believes that the trigger message is used
by naive senders who want to refer to ¢; or t.. But
naive senders who want to refer to ¢. would also use
my, with probability 2. So, by Bayesian condition-
alization, after hearing m., R believes the intended
referent is ¢ with probability #3.

Notice that while R’s success expectations always
sum to one (there is always only exactly one in-
tended referent), .S’s success expectations need not
(several messages could be believed to lead to suc-
cessful communication). A further difference con-
cerns when S and R are sure of communicative suc-
cess. In the simple condition, .5 is already sure of
success, but only R>9 is. In the complex condition,
Rs is already sure of success, but only S>3 is. So,
if we assume that human reasoners aim for certainty
of communicative success in pragmatic reasoning,
the simple condition is less demanding in produc-
tion than in comprehension, while for the complex
condition the reverse is the case.

4 Experiment 1

Exp. 1 tested participants’ behavior in a compre-
hension task that used instantiations of the signaling
games described in Section 2.

4.1 Methods

Participants. Using Amazon’s Mechanical Turk,
30 workers were paid $0.60 to participate. All were
naive as to the purpose of the experiment and partic-
ipants’ IP address was limited to US addresses only.
Two participants did the experiment twice. Their
second run was excluded.

Procedure and Materials. Participants engaged in
a referential comprehension task. On each trial they
saw three objects on a display. Each object differed
systematically along two dimensions: its ontologi-
cal kind (robot or one of two monster species) and
accessory (scarf or either blue or red hat). In addi-
tion to these three objects, participants saw a picto-
rial message that they were told was sent to them
by a previous participant whose job it was to get
them to pick out one of these three objects. They



simple complex
level R S R S
1 (¥/3,%/5,0)  (1,%/2,0,0) (1/2,%/2,0)  (Y/2,1/2,0,1/s)
2 (1,0,0) (1,0,0,0) (1,0,0) (1/2,0,0,1/3)
3 (1,0,0) (1,0,0,0) (1,0,0) (1,0,0,1/3)

Table 1: Success expectations for the trigger items in the simple and complex condition. Success expectations for R
are given in order for ¢, t. and tq4, those for S in order for mg, m., mqy and mqa.

were told that the previous participant was allowed
to send a message expressing only one feature of a
given object, and that the messages the participant
could send were furthermore restricted to monsters
and hats. The four expressible features were visible
to participants at the bottom of the display on every
trial.

Participants initially played four sender trials.
They saw three objects, one of which was high-
lighted with a yellow rectangle, and were asked to
click on one of four pictorial messages to send to
another Mechanical Turk worker to get them to pick
out the highlighted object. They were told that the
other worker did not know which object was high-
lighted but knew which messages could be sent. The
four sender trials contained three unambiguous and
one ambiguous trial which functioned as fillers in
the main experiment.

Participants saw 36 experimental trials, with a 2:1
ratio of fillers to critical trials. Of the 12 critical tri-
als, 6 constituted a simple implicature situation and
6 a complex one as defined in Section 2 (see also
Fig. 1).

Target position was counterbalanced (each criti-
cal trial occurred equally often in each of the 6 pos-
sible orders of target, competitor, and distractor), as
were the target’s features and the number of times
each message was sent. Of the 24 filler trials, half
used the displays from the implicature conditions
but the target was either ¢, or tq (as identified un-
ambiguously by the trigger message). This was also
intended to prevent learning associations of display
type with the target. On the other 12 filler trials,
the target was either entirely unambiguous or en-
tirely ambiguous given the message. That is, there
was either only one object with the feature denoted
by the trigger message, or there were two identical
objects that were equally viable target candidates.
Trial order was pseudo-randomized such that there

were two lists (reverse order) of three blocks, where
critical trials and fillers were distributed evenly over
blocks. Each list began with three filler trials.

4.2 Results and Discussion

Proportions of choice types are displayed in
Fig. 3(a). As expected, participants were close to
ceiling in choosing the target on unambiguous filler
trials but at chance on ambiguous ones. This con-
firms that participants understood the task. On criti-
cal implicature trials, participants’ performance was
intermediate between ambiguous and unambiguous
filler trials. On simple implicature trials, participants
chose the target 79% of the time and the competitor
21% of the time. On complex implicature trials, the
target was chosen less often (54% of the time).

To test whether the observed differences in tar-
get choices above were significantly different, we
fitted a logistic mixed-effects regression to the data.
Trials on which the distractor was selected were ex-
cluded to allow for a binary outcome variable (target
vs. no target choice). This led to an exclusion of 5%
of the data. The model predicted the log odds of
choosing a target over a competitor from a Helmert-
coded CONDITION predictor, a predictor coding the
TRIAL number to account for learning effects, and
their interaction. Three Helmert contrasts over the
four relevant critical and filler conditions were in-
cluded in the model, comparing each condition with
arelatively less skewed distribution against the more
skewed distributions (in order: ambiguous fillers,
complex implicatures, simple implicatures, unam-
biguous fillers). This allowed us to capture whether
the differences in distributions for neighboring con-
ditions suggested by Fig. 3(a) were significant. We
included the maximal random effect structure that
allowed the model to converge:> by-participant ran-

?For the procedure that was used to generate the random
effect structure, see http://hlplab.wordpress.com/



Coef 5 SE(B) z P
(INTERCEPT) 1.81 0.22 8.3 <.0001
AMBIG.VS.REST —2.56 045 —=5.6 <.0001
COMPLEX.VS.EASIER —-3.20 0.53 —-6.0 <.0001
SIMPLE.VS.UNAMBIG —2.68 0.81 -3.3 <.001
TRIAL 0.00 0.01 0.3 0.8
TRIAL:AMBIG.VS.REST —0.07 0.03 —-2.6 <.05
TRIAL:COMPLEX.VS.EASIER —0.01 0.03 —-04 0.7
TRIAL:SIMPLE.VS.UNAMBIG 0.08 0.05 1.7 0.08

Table 2: Model output of Exp. 1. AMBIG.VS.REST, COMPLEX.VS.EASIER, and SIMPLE.VS.UNAMBIG are the

Helmert-coded condition contrast predictors, in order.

dom slopes for CONDITION and TRIAL and by-item
random intercepts. Results are given in Table 2.

All Helmert contrasts reached significance at p <
.001. That is, all target/competitor distributions
shown in Fig. 3(a) are different from each other.
There was no main effect of TRIAL, indicating that
no learning took place overall during the course of
the experiment. However, there were significant in-
teractions, suggesting selective learning in a subset
of conditions. In particular there was a significant
interaction between TRIAL and the Helmert contrast
coding the difference between ambiguous fillers and
the rest of the conditions (AMBIG.VS.REST, 8 =
—.05, SE = .02, p < .05) and a marginally sig-
nificant interaction between TRIAL and the Helmert
contrast coding the difference between the sim-
ple implicature and unambiguous filler condition
(SIMPLE.VS.UNAMBIG, 8 = .08, SE = .05, p =
.08). Further probing the simple effects revealed that
participants chose the target more frequently later in
the experiment in the simple and complex condition.
This was evidenced by a main effect of TRIAL on
that subset of the data (5 = .03, SE = .01, p < .05)
but no interactions with condition. There were no
learning effects in the ambiguous and unambiguous
filler conditions; participants were at chance for am-
biguous items and at ceiling for unambiguous items
throughout. This suggests that at least some partici-
pants became aware that there was an optimal strat-
egy and began to employ it as the experiment pro-
gressed.

We next address the question of whether the data
supports the within-participant distributions pre-
dicted by standard IBR. Recall from Section 2 that

2009/05/14/random-effect-structure/

for the simple condition, IBR predicts Ry players to
have a uniform distribution over target and competi-
tor choices and R>1 players to choose only the tar-
get. For the complex condition, the uniform distribu-
tion is predicted for both Ry and R; players, while
only target choices are expected for I7>2 players.

This is not borne out (see Fig. 4(a)). On the one
hand, there were 3 participants in the simple condi-
tion and 5 in the complex condition who chose the
target on half of the trials and could thus be classified
as Ry (or R; in the complex condition). Similarly,
there were 11 participants in the simple condition
and one in the complex condition who chose only
targets and thus behaved as sophisticated receivers
according to IBR. On the other hand, the majority of
participants’ distributions over target and competi-
tor choices deviated from both the uniform and the
target-only distribution.

One possibility is that some participants’ type
shifted from Ry to Ry, as the experiment pro-
gressed. That is, they may have shifted from ini-
tially choosing targets and competitors at random to
choosing only targets. However, while it is the case
that overall more targets were chosen later in the ex-
periment in both implicature conditions, there was
nevertheless within-participant variation in choices
late in the experiment inconsistent with a categori-
cal shift. Another possibility is that the experiment
was too short to observe this categorical shift.

S Experiment 2

Exp. 2 tested participants’ behavior in a production
task that used instantiations of the signaling games
described in Section 2.
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Participants. Using Amazon’s Mechanical Turk,
30 workers were paid $0.60 to participate under the
same conditions as in Exp. 1. Data from two partici-
pants whose comments indicated that not all images
displayed properly were excluded.

Procedure and Materials. The procedure was the
same as on the sender trials in Exp. 1. Participants
saw 36 trials with a 2:1 ratio of fillers to critical tri-
als. There were 12 critical trials (6 simple and 6
complex implicature situations as in Fig. 1). Half
of the fillers used the same displays as the impli-
cature trials, but one of the other two objects was
highlighted. This meant that the target message was
either unambiguous (e.g. when the highlighted ob-
ject was t¢ in Fig. 1(a) the target message was m)
or entirely ambiguous. The remaining 12 filler trials
employed other displays with either entirely unam-
biguous or ambiguous target messages. Two exper-

ensured as in Exp. 1.

5.2 Results and Discussion

Proportions of choice types are displayed in
Fig. 3(b). As in Exp. 1, participants were close to
ceiling for target message choices on unambiguous
filler trials but at chance on ambiguous ones. On
critical implicature trials, participants’ performance
was slightly different than in Exp. 1. Most notably,
the distribution over target and competitor choices in
the simple implicature condition was more skewed
than in Exp. 1 (95% targets, 5% competitors), while
it was more uniform than in Exp. 1 on complex im-
plicature trials (50% targets, 47% competitors).

We again fitted a logistic mixed-effects regres-
sion model to the data. Trials on which the distrac-
tor messages were selected were excluded to allow
for a binary outcome variable (target vs. competi-



tor choice). This led to an exclusion of 2% of tri-
als. In addition, the unambiguous filler condition
is not included in the analysis reported here since
there was only 1 non-target choice after exclusion
of distractor choices, leading to unreliable model
convergence. Thus, as in Exp. 1, CONDITION was
entered into the model as a Helmert-coded variable
but with only two contrasts, one comparing the sim-
ple implicature condition to the mean of ambigu-
ous fillers and the complex implicature condition
(SIMPLE.VS.HARDER), and another one comparing
the ambiguous fillers with the complex implicatures
(AMBIG.VS.COMPLEX). The model reported here
further does not contain a TRIAL predictor to con-
trol for learning effects because model comparison
revealed that it was not justified (x2(1) = 0.06,
p = .8). That is, there were no measurable learning
effects in this experiment. We included the maximal
random effects structure that allowed the model to
converge: by-participant random slopes for CONDI-
TION and by-item random intercepts.

The SIMPLE.VS.HARDER Helmert contrast
reached significance (8 = 3.04, SE = 0.5,
p < .0001) while AMBIG.VS.COMPLEX did not
(B = 0.08, SE = 0.41, p = .9). That is, there
was no difference between choosing a target in
the ambiguous filler condition and in the complex
implicature condition, suggesting that participants
were at chance in deriving complex implicatures in
production. However, they were close to ceiling in
choosing targets in the simple implicature condition.

The observed within-participant distributions are
better predicted by the qualitative version of IBR
than in Exp. 1 (see Fig. 4(b)). For the simple condi-
tion, IBR predicts Sy players to have a uniform dis-
tribution over target and competitor choices and S>1
players to choose only the target. For the complex
condition, the uniform distribution is predicted for
both Sy and S; players, while only target choices
are expected for S>9 players.

In the simple implicature condition, 75% of par-
ticipants were perfect .S1 reasoners. The remaining
25% chose almost only targets. That is, participants
very consistently computed the implicature. In con-
trast, the bulk of participants chose targets versus
competitors at random in the complex implicature
condition. Only 2 participants chose the target 5 out
of 6 times.

Comparing these results to the results from
Exp. 1, we see the following pattern: in produc-
tion the simple one-level implicatures are more read-
ily computed than in comprehension, while the
more complex two-level implicatures are more read-
ily computed in comprehension than in production.
That is, rather than comprehension mirroring pro-
duction, in this paradigm there is an asymmetry be-
tween the two. This is consistent with the quanti-
tative interpretation of IBR (as described in section
3) that takes into account players’ uncertainty about
communicative Ssuccess.

6 General Discussion

In two studies using an abstract language game we
investigated speakers’ and hearers’ strategic reason-
ing about referential descriptions. Most generally,
our results clearly favor step-wise solution concepts
like TBR over equilibrium-based solution concepts
(e.g. Parikh (2001)) as predictors of participants’
pragmatic reasoning: our results suggest that inter-
locutors do take perspective and simulate each oth-
ers’ beliefs, although (a) message and interpreta-
tion choice behavior is not always optimal and (b)
perspective-taking decreases as the number of rea-
soning steps required to arrive at the optimal re-
sponse, as predicted by IBR, increases.

We also found evidence for an intriguing asym-
metry between production and comprehension.
While not predicted by the standard formulation of
the IBR model, this asymmetry is consistent with
an interpretation of IBR that takes into account the
uncertainty that interlocutors have about the prob-
ability of communicative success given a restricted
set of message and interpretation options. This calls
for a revision of the IBR model to incorporate more
nuanced quantitative information. Since, moreover,
there is a substantial amount of individual varia-
tion, further investigating the role of individual dif-
ferences on perspective-taking (e.g. Brown-Schmidt
(2009)) promises to be a fruitful avenue of further
research that could inform model revisions.

It could be objected that the comparison of im-
plicatures across experiments may be problematic
due to the different nature of the tasks involved in
the production vs. comprehension experiments and
differences underlying the involved inference pro-



cesses. However, note that the version of the IBR
model that takes into account interlocutor uncer-
tainty predicts the asymmetry between production
and comprehension that we found precisely by in-
tegrating some of the differences involved in the
two processes: most importantly, since conversa-
tion is modelled as a dynamic game, the sender rea-
sons about the future behavior of the receiver, while
the receiver reasons “backward”, so to speak, using
Bayesian conditionalization, about the most likely
initial state the sender could have been in; this gives
rise, as we have seen, to different predictions about
when a speaker or a hearer can be absolutely certain
of communicative success. How this difference is
implemented mechanistically is an interesting ques-
tion that merits further investigation.

Frank and Goodman (2012) report the results of
an experiment using a referential game almost iden-
tical to ours and show that a particular Bayesian
choice model very reliably predicts the observed
data for both comprehension and production. In
fact, the proposed Bayesian model is a variant of
IBR reasoning that considers only a level-1 sender
and a level-2 receiver, but assumes smoothed best
response functions at each optimization step. In a
smoothed IBR model, players’ choices are stochas-
tic with choice probabilities proportional to expected
utilities (see Rogers et al. (2009) for a general for-
mulation of such a model in game theoretic terms).
This suggests a straightforward agenda for future
work: combining our approach and that of Frank
and Goodman (2012), smoothed IBR models that al-
low various strategic types for speakers and listeners
should be further tested on empirical data.

In related work investigating comprehenders’ ca-
pacity for deriving ad hoc scalar implicatures, Stiller
et al. (2011) found that subjects could draw simple
implicatures of the type we report above in a setup
very similar to ours, but failed to draw complex
ones. In contrast, our comprehenders performed
above chance in the complex condition (albeit only
slightly so). One possible explanation for this differ-
ence is that unlike Stiller et al. (2011), we restricted
the set of message alternatives and also made it ex-
plicit to participants that a message could only de-
note one feature. This highlights the importance
of (mutual knowledge of) the set of alternatives as-
sumed by interlocutors in a particular communica-

tive setting. While we restricted this set explicitly,
in natural dialogue there is likely a variety of factors
that determine what constitutes an alternative.

This suggests that future extensions of this
work should move towards an artificial language
paradigm. For example, whether a given message
constitutes an alternative is likely to be affected by
message complexity, which was held constant in our
setup by using pictorial messages. Artificial lan-
guage paradigms allow for investigating the effect
of message complexity on inferences of the type re-
ported here. Similarly, it will be important to fur-
ther test the quantitative predictions made by IBR,
e.g. by parametrically varying the payoff of commu-
nicative success and failure s and f and the interac-
tion thereof with message complexity.

One question that arises in connection with the
restrictions we imposed on the set of available pic-
torial messages, is the extent to which our results
are transferable to natural language use. This is a
legitimate concern that we would have to address
empirically in future work. But notice also that,
firstly, there is no a priori reason to believe that
reasoning about natural language use and reasoning
about our abstract referential games should neces-
sarily differ — indeed it has been noted as early as
Grice (1975) that conversational exchanges consti-
tute but one case of rational communicative behav-
ior. More importantly, even if reasoning about nat-
ural language were different in kind from strategic
reasoning in general, the kind of strategic IBR rea-
soning we address here is a specific variety of rea-
soning that has been explicitly proposed in the lit-
erature as a model of pragmatic reasoning. The re-
ported experiments are thus relevant in at least as
far as they are the first empirical test of whether hu-
man reasoners are, in general, able to perform this
kind of strategic reasoning in a task that translates
the proposed pragmatic context models as directly
as possible into an experimental setting.

We conclude that the studies reported are an
encouraging first step towards validating game-
theoretic approaches to formal pragmatics, which
are well-suited to modeling pragmatic phenom-
ena and generating quantitative, testable predictions
about language use. The future challenge, as we see
it, lies in fine-tuning the formal models alongside
further careful empirical investigation.
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